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Abstract 
 

The diffusion-based salient object detection methods have shown excellent detection results 
and more efficient computation in recent years. However, the current diffusion-based salient 
object detection methods still have disadvantage of detecting the object appearing at the image 
boundaries and different scales.To address the above mentioned issues, this paper proposes a 
multi-scale diffusion-based salient object detection algorithm with background and objectness 
seeds. In specific, the image is firstly over-segmented at several scales. Secondly, the 
background and objectness saliency of each superpixel is then calculated and fused  in each 
scale. Thirdly, manifold ranking method is chosen to propagate the Bayessian fusion of 
background and objectness saliency to the whole image. Finally, the pixel-level saliency map 
is constructed by weighted summation of saliency values under different scales. We evaluate 
our salient object detection algorithm with other 24 state-of-the-art methods on four public 
benchmark datasets, i.e., ASD, SED1, SED2 and SOD. The results show that the proposed 
method performs favorably against 24 state-of-the-art salient object detection approaches in 
term of popular measures of PR curve and F-measure. And the visual comparison results also 
show that our method  highlights the salient objects more effectively.   
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1. Introduction 

When dealing with large amounts of vision data, humans usually pay more attention to the 
most valuable information for priority processing. Inspired by this visual attention mechanism 
used in [1], computer vision employs saliency detection to automatically find the prominent 
regions in a scene to reduce the computational loads in the subsequent image processing and 
analysis. Early efforts focus on fixation prediction [2,3] which compute a probabilistic map of 
a image to predict the actual human eye gaze patterns. Alternatively, salient object detection 
[4,5] has been effectively applied to numerous computer vision tasks such as image 
segmentation, object retrieval, object recognition, content-aware image resizing and so on. 
Salient object detection has received intensive research attention in recent years, which can be 
further classified as either the top-down model or the bottom-up model. The top-down learns 
task-driven models through training process with specific prior knowledge. While the 
bottom-up is known as data driven, mainly detects saliency by visual contrast without any 
knowledge. In this paper, we focus on the bottom-up salient object detection. 
    All bottom-up salient object detection methods rely on some prior about salient objects or 
backgrounds. The contrast can be viewed as the most widely used prior, which usually 
assumes salient pixels or superpixels have strong feature distinctiveness in certain image areas. 
However, the rarity parts of the background are wrongly detected as targets only using contrast 
prior inevitably. Therefore, some salient object detection methods introduce center prior to 
solve above problems. Since salient objects do not always appear at the image center, the 
center-biased models may miss the foreground regions. 
    Recently, diffusion-based methods have attracted growing interest from the community. 
Almost these approaches explore the image boundaries as background prior, which map the 
image into a graph with image superpixels as nodes and edge strength is proportional to 
superpixels similarity. Then the saliency information of background seeds is spatially 
propagated to the whole image on this graph. The diffusion-based salient object detection 
algorithm has shown favorable detection result. However, similar to center-biased model, 
when salient object appear at the image boundary, this kind of models will lead to error results. 
In addition, detecting salient object in one scale hinder them from full performance since 
salient objects are likely to appear at different scales. To address the above mentioned issues, 
we propose a multi-scale diffusion-based salient object detection algorithm with background 
and objectness seeds.  

2. Related Work 
Because saliency detection is a highly ill-posed problem, the bottom up models almost rely on 
assumptions about the properties of objects and backgrounds. The most widely used is the 
contrast prior which assume the salient object has unique characteristics with their 
surroundings. Itti et al. [6] define image saliency as the center-surround contrast based on 
difference of Gaussians. Ma and Zhang [7] estimate saliency by calculating 
center-surrounding color differences in a small neighborhood. Achanta et al. [8] determine the 
saliency of each pixel as the distance between the average vectors in its inner region with the 
outer region of its neighborhood. Goferman et al. [9] further implement local contrast by 
incorporating positional information. Different from the local ones measure saliency by 



4978                                  Yang et al.: Multi-scales Diffusion-based salient object detection with background and objectness seeds 

various appearance contrast in the local neighborhood, global models aim to capture the 
holistic rarity from an image. Zhai and Shah [10] define pixel-level saliency based on a pixel’s 
contrast to all other pixels only with luminance information. While Cheng et al. [11] measure 
the global contrast values for image pixels in the Lab color space. Achanta et al. [12] directly 
compute global saliency using a pixel’s color difference with the average image color. The 
above methods define the saliency in pixel-level, which is computationally expensive in 
dealing with spatial relationships. Therefore, Cheng et al. [11] segment the image into 
superpixels the same as [13], and compute the saliency for each region as the weighted sum of 
the region’s contrast to all other regions. Unlike RC method in [11] that rely on superpixels for 
image abstraction, Cheng et al. [14] further propose a GMM based abstract representation to 
get the efficient evaluation of global cues. Margolin et al. [15] integrate the pattern distinctness 
of patch via PCA with the color distinctness to achieve the final saliency. 
   While contrast prior based methods have achieved promising results, they still severed the 
limitations of mistaken detecting the rarity part as the salient object. Therefore, some salient 
object  detection methods combine contrast prior with other priors such as center prior. Jiang 
et al. [16] both calculate the color distinction of each patch to their spatial neighbors and the 
average spatial distance to the image center. Yan et al. [17] combine the global color contrast 
of each patch and center prior as the saliency of each layer, and use hierarchical inference to 
fuse cues in different scales. Tong et al. [18] employ Bayesian inference to integrate the local 
contrast, integrity and center prior as saliency in each scale. The final saliency map is the 
weighted summation of saliency maps in different scales. Zhang et al. [19] combine the 
average of reconstruction errors and the location prior to get the initial saliency map. But the 
above center-biased models are not effective when salient objects do not appear at the image 
center. Therefore, Xie et al. [20] apply Harris points detection to get a coarse location of the 
salient region. And compute a prior map based on the rough region for the Bayesian model to 
achieve the final saliency map. While Jiang et al. [21] randomly sample certain number of 
windows over the image, and measure the probability of each window containing a complete 
object to get objectness prior. 
    Recently, more and more bottom-up methods prefer to use the image boundary as the 
background seeds. Wei et al. [22] propose measuring saliency of an image patch by calculating 
the length of its shortest path to the background node. Lu et al. [23] exploit image boundaries 
as the likely background regions to construct template. Based on this template, they 
reconstruct the entire image by dense and sparse appearance models from which errors are 
used as indication of saliency. Lu et al. [24] proposed a salient object detection method by 
exploiting both weak and strong models, in which a weak saliency model is constructed by the 
contrast between each region and the regions along the image border. Jia et al. [25] propose a 
detection method via a unified generative and discriminative model, where the generative 
model define image saliency as the sparse coding residual based on a learned background 
dictionary. Tong et al. [26] construct the bottom-up saliency map by integrating contrast prior, 
center prior and objectness prior, in which the contrast is indicated by the difference between 
each unit and the regions along the image border. Zhu et al. [27] propose a robust background 
measure which consider the region heavily connected to the image boundary as background. 
Zhou et al. [28] also exploit boundary information to remove the foreground noises from the 
superpixels located at four borders. Wang et al. [29] take both background and foreground into 
consideration, and  the background seeds are collected using boundary information.  
     In order to exploit background prior to construct saliency detection model more efficiently, 
there rise up some diffusion-based methods to propagate saliency information of seeds to the 
whole image. Sun et al. [30] calculate the preliminary saliency map using the Markov 
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absorption probability on a weighted graph via partial image borders as background prior. 
Jiang et al. [31] choose the virtual boundary nodes as the absorbing nodes in a Markov chain 
and the saliency is computed by the absorbed time from each transient node to boundary 
absorbing nodes. Zhai et al. [32] formulate the saliency propagation process as random walks 
with two agents on a graph simultaneously. Zhang et al. [33] utilize the four boundaries of the 
input image as background prior to extract foreground queries for the final saliency map. The 
manifold ranking algorithm in [33] outperforms most of the state-of-the-art saliency detection 
methods and is more computationally efficient. Therefore, we improve this algorithm by 
propagating the saliency to the whole image with background and objectness seeds.Otherwise, 
we also extend the manifold ranking based saliency detection algorithm to multi-scale. 
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Fig. 1. Diagram of proposed salient object detection algorithm 

3. Our Method 
The diagram of our proposed salient object detection algorithm is shown in Fig. 1, which 
includes the following three main steps:(1)the background and objectness saliency of each 
superpixel is calculated and fused in each scale.(2)the saliency information of background and 
objectness seeds is propagated to the whole image using manifold ranking method in each 
scale. (3) the final saliency map is constructed by weighted summation of saliency values 
under different scales.The detailed description of each step is as follows. 

3.1 Calculation of background and object seeds 
For a given image, it is firstly over-segmented into superpixels at N scales using the simple 
linear iterative clustering(SLIC) algorithm. At any scale n, an image is segmented into 
superpixels Rir n

n
i 1,2,...,},{ )( = ,where Rn is the number of regions under scale n. Both Lab 

and RGB color spaces are used to extract the mean color features and coordinates of pixels to 
describe each superpixel. Each superpixel is then represented as Rf Dn

i
1)( ×∈ , where D is the 

feature dimension. We assume the superpixels locating at image boundary as the background 
prior. If the number of background superpixels is M, then the jth background superpixel is 
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and the sparse reconstruction error is: 
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     Objectness state the probability of there being a complete object in a local window centered 
on each pixel. In order to compute the objectness of each pixel, we take any pixel in a given 
image as the center, and randomly sample W windows over the image. Each window w is 
assigned an objectness value P(w) calculated by [34]. Thereafter, we overlap all the windows 
to obtain objectness O(p) for each pixel p by 

∑
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where w denotes any window in W that contains pixel p. We set W=10000 in our experiment. 
For every superpixel r n

i
)( , we compute its region-level objectness by 
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where pi denotes the number of pixels in the ith superpixel. We use Bayesian inference to 
integrate the background and the objectness saliency measures by 
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3.2 Saliency ranking with fused background and objectness seeds 
In each single scale, we use the most popular way to construct a graph G(V, E) in which each 
superpixel is the node and connected with its K-nearest neighbors just like the presentation in 
[35, 36]. The links between pairs of nodes are the edges E. In this work, the weight wij of the 
edge eij between adjacent nodes is defined as 
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where c n
i

)( and c n
j

)( are the mean  CIELAB color values of two superpixels, l n
i

)( and l n
j

)( are the 
mean coordinate values of  two superpixels, )(⋅N is  a neighborhood function, and σ2 is a 
constant that controls the strength of the weight. The degree matrix D=diag(d1,...,dn) is then 
generated as 

∑=
j

iji wd                                                                         (7) 

   In order to manipulate manifold ranking to propagate the saliency to the whole image, we 
set the threshold as the mean saliency of )(rS n

iBI to binary segment the saliency map. 
Accordingly, the binary query )(rS n

iq {0,1} is obtained. Then the saliency of each node is 
computed as rank )(rS n

ir  in the graph with respect to a query Sq. The optimal ranking 

http://www.baidu.com/link?url=ENQHcG7v6YBaNGDi32ID3bNDP_zZDB7kts0MoKPeXz6Ofwd8dICELD89AQ69u66fHrhUuUGEB1ogpZKnlu3u2pXjyvxpIvwbUGW8VmXiapO
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minimizes the energy of the form 
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where μ is a controlling parameter. The optimal solution is given as: 
SαWDS qr )( 1−= −                                                              (9) 

where α=1/(1+μ). 

3.3Multi-Scale fusion 
we propagate saliency values in different scales to pixels. The pixel-level saliency map is 
constructed by weighted summation of saliency values. The weights are measured using the 
Euclidean distance between the CIELab color of a pixel and the average of pixels within the 
superpixel. We define the overall saliency map Sp by, 
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where i is the index of region, n is the index of superpixel scale, ɛ is a small constant , l n
i

)( is the 
color center of region r n

i
)( , ǁ·ǁ is distance, δ(·) is the indicator function. 

The main procedure of the proposed method is summarized in Algorithm1. 
 
Algorithm1 Multi-scale diffusion-based salient object detection with background and objectness seeds 
Input: An image and required parameters 
1.segment input image into superpixels at multi-scale 
2.use the boundary superpixels as background template to compute saliency of each superpixel by 
Eq.(2) ;computer objectness of each superpixels by Eq.(4). 
3.integrate the background and the objectness saliency measures by Eq.(5). 
4.obtain the queries from fused saliency values, and compute saliency map by Eq.(9) 
5.step 1-4 are repeated in other scales, and the saliency values of different scales is fused to get the final 
pixel-level saliency map using Eq.(10) 
Output: the full resolution saliency map 

4.Experiments 
4.1Database and evaluation metrics 
Our experiments are conducted on four public datasets. The ASD dataset is a subset of MSRA 
database, and this dataset provides accurate human-labeled ground truth for each image. The 
second one is the SED dataset, which is further categorized as one single object sub-dataset 
SED1 and two objects sub-dataset SED2. Each sub-dataset contains 100 images and has 
accurate pixel-wise ground truth provided by three subjects. We also evaluate the proposed 
method on the more challenging SOD dataset, which contains 300 images taken from the well 
known Berkeley segmentation dataset. This dataset is more challenging than above three 
datasets as images usually contain multiple objects of different sizes and positions under more 
complex backgrounds. Seven subjects are asked to label the foreground salient object masks. 
For each object mask of the each subject, a consistency score is computed based on the labels 
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of the other six subjects. We select and combine the object masks whose consistency scores 
are higher than 0.7 as the final ground truth. 
  The first evaluation metric is PR curve. Each saliency map is segmented with a given 
threshold T[0,255] to get a binary map, which is then compared with the ground truth mask 
to compute the precision and recall  by 
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where GT and BS denote the ground truth and binary map respectively. Vary the threshold T 
from 0 to 255 to generate a sequence of precision-recall values for each image. Then the PR 
curve is plotted by taking average precision as horizontal coordinates and average recall  as 
vertical coordinates. In the second evaluation, we use threshold tα to binarize the saliency map 
to compute F-measure by 
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we set β2=0.3 to emphasis precision more important than recall, the same as [11,17,21].The 
threshold tα is set as proportional to the mean saliency of the image and computed by 
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in which the empirical value of K is 2. In order to comprehensively report the F-measure 
characteristics, we uniformly sample a set of K in[0.1 6]with an interval 0.1 to compute the 
average F-measure for each K, and then plot the average Fβ-K curve correspondingly. 
 
4.2 Evaluation of each component in our method 
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Fig. 2. The PR curves of each component in our method 
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The seven scales in our proposed method is obtained by setting the superpixel numbers and 
compactness of SLIC as{50,100,150,200,250,300,350} and {10,10,20,20,25,30,30}. To 
clearly verify the effectiveness of each component in our method, we evaluate each individual 
component of the proposed algorithm on the ASD database in term of PR curve. Therefore, we 
quantitatively compare the background saliency map in one scale(BS), the object saliency map 
in one scale(OS), the Bayesian fusion of background saliency map and object saliency 
map(BOS), the ranking result with fused background and objectness seeds (RBOS), and the 
multi-scale fusion of the ranking saliency maps(MRBOS). The PR curve of each component  
is shown in Fig. 2.The result demonstrate that the BOS significantly outperforms BS and OS, 
which indicates background and objectness priors used in our method complement each other 
perfectly in detecting the saliency. We can also observe that RBOS achieves superior 
performance than BOS, which shows that the manifold ranking algorithm further refines the 
ahead result. We can also see that  MRBOS consistently performs better than RBOS, which 
proves that the fusion of multi-scale detection contribute to the final result. All the above 
confirm that each component complements each other that leads to the best performance. 
4.3Comparisons with state-of-art methods 
We compare our method with state-of-art salient object detection algorithms, which is further 
classified into the following two categories. One class is the methods only use contrast priors, 
including IT [6], MZ [7], AC [8], CA [9], LC [10], HC [11], FT [12], RC [11], GC [14], PD 
[15], the other methods use other priors, including CBS[16], HS[17], MSS [18], CHB [20], 
UFO [21], GS [22], DSR [23], BL [24], GL [26],  RBD [27], BFS [29], MAC [30], MAP [31], 
GBMR [33].We use the implementation provided by authors to get the saliency maps. 
 
4.3.1 Quantitative Comparisons 
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(a)Comparison with the ones using contrast prior         (b)Comparison with the ones using other priors 

 
Fig. 3. Evaluation results on ASD dataset 
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(a)Comparison with the ones using contrast prior         (b)Comparison with the ones using other priors 

Fig. 4. Evaluation results on SED1 dataset 
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(a)Comparison with the ones using contrast prior         (b)Comparison with the ones using other priors 

Fig. 5. Evaluation results on SED2 dataset 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on

 

 

IT
MZ
AC
CA
LC
HC
FT
RC
GC
PD
Ours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on

 

 

CBS
HS
MSS
CHB
UFO
GS
DSR
BL
GL
RBD
BFS
MAC
MAP
GBMR
Ours

(a)Comparison with the ones using contrast prior         (b)Comparison with the ones using other priors 
Fig. 6. Evaluation results on SOD dataset 

 
The PR curves of all salient object detection algorithms are presented in Fig. 3, Fig. 4, Fig. 5 
and Fig. 6. We can see that when the threshold T is equal to 0, the recall rate reaches the 
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maximum value, all methods have the same precision. The values are 0.1985, 0.2674, 0.2137, 
0.2748 on ASD, SED1, SED2 and SOD respectively, which indicate each dataset has 19.85%, 
26.74%, 21.37% , 27.48% of the pixels belong to the salient region. When the threshold T is 
equal to 255, the recall rate reaches the minimal value, the precision of our method has reached 
to 0.9549, 0.9215, 0.8917, 0.8467 on ADS, SED1, SED2, and SOD respectively. From Fig. 
3(a), Fig. 4(a), Fig. 5(a), and Fig. 6(a), we see that our method significantly outperforms all 
the methods of the first class in almost the entire recall range on the four datasets. As observed 
from Fig. 3(b), Fig. 4(b), and Fig. 6(b), our method achieves consistent and favorable 
performance against all the methods of the second class on ASD, SED1 and SOD. When the 
recall rate is above 0.85, our method can maintain the precision above 0.9 on ASD. When the 
recall rate is above 0.6, our method can maintain the precision above 0.9 on SED1.  On SED2 
dataset, the PR curve of our method is a little bit lower than the other methods but it still can 
maintain the recall rate at above 0.7 when the precision rate goes beyond 0.9.The performance 
improvement becomes obvious on the more complex SOD dataset especially when the recall 
rate locates at the range of [0.2,0.6]. The above analysis indicates our method can detect the 
salient region with a higher accuracy, and has a better detection performance. 
 

IT MZ AC CA LC HC FT RC GC PD CBS HS MSS CHB UFO GS DSR BL GL RBD BFS MAC MAP GBMR Ours
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 
Precision
Recall
F-measure

 
(a)ASD dataset 
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(b)SED1 dataset 
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(c)SED2 dataset 
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(d)SOD dataset 

Fig. 7. Precision, recall and F-measure for adaptive thresholds 
 

The bar graphs of average precision, recall and F-measure values using adaptive threshold 
are shown in Fig. 7. As observed from Fig. 7(a)(b)(c)(d), we see that our method has the 
highest precision among all the methods on ASD, SED1, SED2, and SOD. Our method has the 
highest F-measure among all the methods on ASD and SED2, but our method only has the 
third and second F-measure among all the methods on SED1 and SOD. Otherwise, compared 
with most related work GBMR, our method increases the precision from 0.9207 to 0.9332, and 
increases F-measure from 0.8957 to 0.9004 on ASD. Meanwhile, our method  achieves an 
increase of 1.83% in term of precision on SED1. Our method increases the precision from 
0.8011 to 0.8813, and increases F-measure from 0.7209 to 0.7862 on SED2. Our method 
increases the precision from 0.7077 to 0.7497, and increases F-measure from 0.5774 to 0.5841 
on SOD. The above analysis indicates that our method indeed improves GBMR by using 
background and objectness seeds and multi-scale detection. The Fβ- K curves of all salient 
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object detection algorithms are shown in Fig. 8, Fig. 9, Fig. 10, and Fig. 11. The results show 
that our method has the top Fβ values at most selections of the K value. 
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(a)Comparison with the ones using contrast prior         (b)Comparison with the ones using other priors 

Fig. 8. Fβ- K curve on ASD dataset 
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(a)Comparison with the ones using contrast prior         (b)Comparison with the ones using other priors 

Fig. 9. Fβ- K curve on SED1dataset 
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(a)Comparison with the ones using contrast prior         (b)Comparison with the ones using other priors 

Fig. 10. Fβ- K curve on SED2 dataset 
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(a)Comparison with the ones using contrast prior         (b)Comparison with the ones using other priors 

Fig. 11. Fβ- K curve on SOD dataset 
 

4.3.2 Visual Comparisons 
Some examples for visual comparison of all salient object detection algorithms are shown in 
Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18 and Fig. 19. As shown in Fig. 12(b), 
Fig. 14(b), Fig. 16(b), and Fig. 18(b), IT do not generate full resolution saliency maps 
because of using down sampling to realize multi-scale detection. As shown in Fig. 12(c)(d)(e), 
Fig. 14(c)(d)(e), Fig. 16(c)(d)(e), and Fig. 18(c)(d)(e), MZ, AC and CA tend to highlight the 
boundaries by virtue of calculating the local contrast in a small neighborhood. LC, HC, RC, 
GC estimate color contrast over the entire image, but they mistaken detecting the brightest 
color as the salient region as shown in the third row of Fig. 12(f)(g)(i)(j). From Fig. 12(k), Fig. 
14(k), Fig. 16(k), and Fig. 18(k), we can see that PD performs well in highlighting the 
boundaries but still cannot label all the pixels inside the salient objects. As shown in the first 
and second row of Fig. 13(b)(c)(d), CBS, HS and MSS mistaken detecting the center region as 
the salient  object. The accuracy of CHB depends on the location of convex hull. The result of 
Fig. 19(e) shows that when the background of image become complicated, CHB will fail as 
there appears more corner points on background regions. As shown in Fig.19(f)(j), UFO and 
GL do not work well in the more complex SOD dataset. The accuracy of GS, DSR, BL reduce 
when the object appearing at the boundary as shown in Fig. 13(g)(h)(i). Compared to the 
saliency map generated by MAC, MAP, GBMR in Fig. 13(m)(n)(o), Our method performs 
well in highlighting both the small and big salient objects. As shown in Fig. 13(p), Fig. 15(p), 
Fig. 17(p) and Fig. 19(p), our method also work well in detecting multiple objects and the 
objects with complex background. Overall, the saliency maps of our method are more similar 
to their corresponding ground truth. 
 

 
(a)Original  ( b)IT        (c)MZ    (d)AC     (e)CA      (f)LC     (g)HC    (h)FT      (i)RC       (j)GC      (k)PD        (l)Ours     (m)GT 

Fig. 12. The visual comparisons with the detection algorithms only using contrast prior in ASD 
database 
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(a)Original          (b)CBS            (c)HS             (d)MSS            (e)CHB        (f)UFO            (g)GS             (h) DSR         (i) BL 

 
(j) GL           (k) RBD            (l) BFS           (m) MAC          (n)MAP           (o)GBMR         (p)Ours             (q) GT  

Fig. 13. The visual comparisons with the detection algorithms using other priors in ASD database 
 

 
(a)Original    (b)IT     (c)MZ      (d)AC      (e)CA      (f)LC       (g)HC        (h)FT      (i)RC       (j)GC      (k)PD    (l)Ours     (m)GT 

Fig. 14. The visual comparisons with the detection algorithms only using contrast prior in SED1 
database 

 

 
(a)Original          (b)CBS       (c)HS             (d)MSS            (e)CHB        (f)UFO            (g)GS             (h) DSR         (i) BL 

 
 (j) GL           (k) RBD          (l) BFS         (m) MAC        (n)MAP         (o)GBMR            (p)Ours           (q) GT  

Fig. 15. The visual comparisons with the detection algorithms using other priors in SED1 database 
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(a)Original  ( b)IT        (c)MZ    (d)AC     (e)CA      (f)LC     (g)HC    (h)FT      (i)RC       (j)GC      (k)PD        (l)Ours     (m)GT 

Fig. 16. The visual comparisons with the detection algorithms only using contrast prior in SED2 
database 

 

 
(a)Original          (b)CBS       (c)HS             (d)MSS            (e)CHB        (f)UFO            (g)GS             (h) DSR         (i) BL 

 
(j) GL          (k) RBD         (l) BFS         (m) MAC          (n)MAP           (o)GBMR         (p)Ours           (q) GT  

 Fig. 17. The visual comparisons with the detection algorithms using other priors in SED1 database 
 

 
(a)Original  ( b)IT        (c)MZ    (d)AC     (e)CA      (f)LC     (g)HC    (h)FT      (i)RC       (j)GC      (k)PD        (l)Ours     (m)GT 

Fig. 18. The visual comparisons with the detection algorithms only using contrast prior in SOD 
database 

 

 
(a)Original          (b)CBS       (c)HS             (d)MSS            (e)CHB        (f)UFO            (g)GS             (h) DSR         (i) BL 

 
 (j) GL           (k) RBD          (l) BFS         (m) MAC        (n)MAP             (o)GBMR         (p)Ours           (q) GT  

 Fig. 19. The visual comparisons with the detection algorithms using other priors in SOD database 
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5. Conclusion 
In order to improve the accuracy of diffusion-based salient object detection methods, this 
paper propose a multi-scale diffusion-based salient object detection algorithm with 
background and objectness seeds. The image is firstly over-segmented at several scales. The 
background and objectness saliency of each superpixel is then calculated  in each scale. The 
Bayesian fusion of  the background and objectness saliency is subsequently propagated to the 
whole image using manifold ranking algorithm. The final saliency is weighted summarization 
of the saliency under different scales. The results on ASD benchmark dataset confirm the 
efficiency of each component of our method. Extensive experiments against state-of-art 
methods were carried out on ASD, SED and SOD benchmark datasets. The quantitative 
comparison results show that the proposed methods performs favorably against 24 
state-of-the-art salient object approaches. The visual comparison results show that our method 
can highlight the salient object more uniformly and brightly. 
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