• Title/Summary/Keyword: Object detecting

Search Result 555, Processing Time 0.033 seconds

Automatic Detection of Objects-of-Interest using Visual Attention and Image Segmentation (시각 주의와 영상 분할을 이용한 관심 객체 자동 검출 기법)

  • Shi, Do Kyung;Moon, Young Shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.137-151
    • /
    • 2014
  • This paper proposes a method of detecting object of interest(OOI) in general natural images. OOI is subjectively estimated by human in images. The vision of human, in general, might focus on OOI. As the first step for automatic detection of OOI, candidate regions of OOI are detected by using a saliency map based on the human visual perception. A saliency map locates an approximate OOI, but there is a problem that they are not accurately segmented. In order to address this problem, in the second step, an exact object region is automatically detected by combining graph-based image segmentation and skeletonization. In this paper, we calculate the precision, recall and accuracy to compare the performance of the proposed method to existing methods. In experimental results, the proposed method has achieved better performance than existing methods by reducing the problems such as under detection and over detection.

Object-based Building Change Detection from LiDAR Data and Digital Map Using Adaptive Overlay Threshold (적응적 중첩 임계치를 이용한 LiDAR 자료와 수치지도의 객체기반 건물변화탐지)

  • Lee, Sang-Yeop;Lee, Jeong-Ho;Han, Su-Hee;Choi, Jae-Wan;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • Because urban areas change rapidly, it is necessary to reflect urban changes in a digital map database in a timely manner. To address these issues, LiDAR data was used to detect changes in urban area buildings. The purpose of this study is to detect object-based building change using LiDAR data and existing digital maps, and classify change types. In the study, we classified change type using overlay and shape comparison with building layer of the digital maps and point-based extracted building outline from the LiDAR data. When applying the overlay method, we were able to increase the accuracy and objectivity of the change detection process throughout an adaptive threshold applied to each object. In the experiments, it was demonstrated that classifying and detecting changes in urban areas using the proposed method can provide superior classification accuracy compared with the existing methodology.

Development of Object Detection Algorithm Using Laser Sensor for Intelligent Excavation Work (자동화 굴삭기 작업을 위한 레이저 선서의 장애물 탐지 알고리즘 개발)

  • Soh, Ji-Yune;Kim, Min-Woong;Lee, Jun-Bok;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.364-367
    • /
    • 2008
  • Earthwork is very equipment-intensive task and researches related to automated excavation have been conducted. There is an issue to secure the safety for an automated excavating system. Therefore, this paper focuses on how to improve safety for semi- or fully-automated backhoe excavation. The primary objective of this research is to develop object detection algorithm for automated safety system in excavation work. In order to satisfy the research objective, a diverse sensing technologies are investigated and analysed in terms of functions, durability, and reliability and verified its performance by several tests. The authors developed the objects detecting algorithm for user interface program using laser sensor. The results of this study would be the basis for developing the automated object detection system.

  • PDF

Automatic Video Chromakeying Generation Technology Using Background Modeling (배경 모델링을 이용한 비디오 크로마키 생성기법)

  • Yoo, Gil-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.1-8
    • /
    • 2021
  • In online meetings and classes using webcams, the chromakey technique is a very necessary part to produce content. We proposed a technology that enables background synthesis without using a cloth for chromakey. The proposed method consists of three steps: an HSI image conversion step, a step of detecting a region changed from a background, and a step of replacing the background region with a chromakey and applying it. In the input video, the block average image of each frame is calculated, and the difference between the block average image of the background image and the block average image of the input image is used to detect the change area. The developed chromakey effect technology uses a technique of acquiring a background image without an object from a single camera and extracting only an object by distinguishing the moving object and the background. The proposed method is not only capable of processing even if the background has a variety of colors, but also has the seamless processing of the boundary lines of objects.

A Study on the Detection of Solar Power Plant for High-Resolution Aerial Imagery Using YOLO v2 (YOLO v2를 이용한 고해상도 항공영상에서의 태양광발전소 탐지 방법 연구)

  • Kim, Hayoung;Na, Ra;Joo, Donghyuk;Choi, Gyuhoon;Oh, Yun-Gyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.2
    • /
    • pp.87-96
    • /
    • 2022
  • As part of strengthening energy security and responding to climate change, the government has promoted various renewable energy measures to increase the development of renewable energy facilities. As a result, small-scale solar installations in rural areas have increased rapidly. The number of complaints from local residents is increasing. Therefore, in this study, deep learning technology is applied to high-resolution aerial images on the internet to detect solar power plants installed in rural areas to determine whether or not solar power plants are installed. Specifically, I examined the solar facility detector generated by training the YOLO(You Only Look Once) v2 object detector and looked at its usability. As a result, about 800 pieces of training data showed a high object detection rate of 93%. By constructing such an object detection model, it is expected that it can be utilized for land use monitoring in rural areas, and it can be utilized as a spatial data construction plan for rural areas using technology for detecting small-scale agricultural facilities.

Detection of Smoking Behavior in Images Using Deep Learning Technology (딥러닝 기술을 이용한 영상에서 흡연행위 검출)

  • Dong Jun Kim;Yu Jin Choi;Kyung Min Park;Ji Hyun Park;Jae-Moon Lee;Kitae Hwang;In Hwan Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.107-113
    • /
    • 2023
  • This paper proposes a method for detecting smoking behavior in images using artificial intelligence technology. Since smoking is not a static phenomenon but an action, the object detection technology was combined with the posture estimation technology that can detect the action. A smoker detection learning model was developed to detect smokers in images, and the characteristics of smoking behaviors were applied to posture estimation technology to detect smoking behaviors in images. YOLOv8 was used for object detection, and OpenPose was used for posture estimation. In addition, when smokers and non-smokers are included in the image, a method of separating only people was applied. The proposed method was implemented using Google Colab NVIDEA Tesla T4 GPU in Python, and it was found that the smoking behavior was perfectly detected in the given video as a result of the test.

Research on Artificial Intelligence Based De-identification Technique of Personal Information Area at Video Data (영상데이터의 개인정보 영역에 대한 인공지능 기반 비식별화 기법 연구)

  • In-Jun Song;Cha-Jong Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2024
  • This paper proposes an artificial intelligence-based personal information area object detection optimization method in an embedded system to de-identify personal information in video data. As an object detection optimization method, first, in order to increase the detection rate for personal information areas when detecting objects, a gyro sensor is used to collect the shooting angle of the image data when acquiring the image, and the image data is converted into a horizontal image through the collected shooting angle. Based on this, each learning model was created according to changes in the size of the image resolution of the learning data and changes in the learning method of the learning engine, and the effectiveness of the optimal learning model was selected and evaluated through an experimental method. As a de-identification method, a shuffling-based masking method was used, and double-key-based encryption of the masking information was used to prevent restoration by others. In order to reuse the original image, the original image could be restored through a security key. Through this, we were able to secure security for high personal information areas and improve usability through original image restoration. The research results of this paper are expected to contribute to industrial use of data without personal information leakage and to reducing the cost of personal information protection in industrial fields using video through de-identification of personal information areas included in video data.

The Resident Space Object Detection Method Based on the Connection between the Fourier Domain Image of the Video Data Difference Frame and the Orbital Velocity Projection

  • Vasilina Baranova;Alexander Spiridonov;Dmitrii Ushakov;Vladimir Saetchnikov
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • A method for resident space object detection in video stream processing using a set of matched filters has been proposed. Matched filters are constructed based on the connection between the Fourier spectrum shape of the difference frame and the magnitude of the linear velocity projection onto the observation plane. Experimental data were obtained using the mobile optical surveillance system for low-orbit space objects. The detection problem in testing mode was solved for raw video data with intensity signals from three satellites: KORONAS-FOTON, CUSAT 2/FALCON 9, and GENESIS-1. Difference frames of video data with the AQUA satellite pass were used to construct matched filters. The satellites were automatically detected at points where the difference in the value of their linear velocity projection and the reference satellite was close in value. An initial approximation of the satellites slant range vector and position vector has been obtained based on the values of linear velocity projection onto the frame plane. It has been established that the difference in the inclination angle between the detected satellite intensity signal Fourier image and the reference satellite mask corresponds to the difference in the inclinations of these objects. The proposed method allows for detecting and estimating the initial approximation of the slant range and position vector of artificial and natural space objects, such as satellites, debris, and asteroids.

Application of Deep Learning-Based Object Detection Models to Classify Images of Cacatua Parrot Species

  • Jung-Il Kim;Jong-Won Baek;Chang-Bae Kim
    • Animal Systematics, Evolution and Diversity
    • /
    • v.40 no.4
    • /
    • pp.266-275
    • /
    • 2024
  • Parrots, especially the Cacatua species, are a particular focus for trade because of their mimicry, plumage, and intelligence. Indeed, Cacatua species are imported most into Korea. To manage trade in wildlife, it is essential to identify the traded species. This is conventionally achieved by morphological identification by experts, but the increasing volume of trade is overwhelming them. Identification of parrots, particularly Cacatua species, is difficult due to their similar features, leading to frequent misidentification. There is thus a need for tools to assist experts in accurately identifying Cacatua species in situ. Deep learning-based object detection models, such as the You Only Look Once (YOLO) series, have been successfully employed to classify wildlife and can help experts by reducing their workloads. Among these models, YOLO versions 5 and 8 have been widely applied for wildlife classification. The later model normally performs better, but selecting and designing a suitable model remains crucial for custom datasets, such as wildlife. Here, YOLO versions 5 and 8 were employed to classify 13 Cacatua species in the image data. Images of these species were collected from eBird, iNaturalist, and Google. The dataset was divided, with 80% used for training and validation and 20% for evaluating model performance. Model performance was measured by mean average precision, with YOLOv5 achieving 0.889 and YOLOv8 achieving 0.919. YOLOv8 was thus better than YOLOv5 at detecting and classifying Cacatua species in the examined images. The model developed here could significantly support the management of the global trade in Cacatua species.

Detection of Tongue Area using Active Contour Model (능동 윤곽선 모델을 이용한 혀 영역의 검출)

  • Han, Young-Hwan
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.2
    • /
    • pp.141-146
    • /
    • 2016
  • In this paper, we apply limited area mask operation and active contour model to accurately detect tongue area outline in tongue diagnosis system. To accurately analyze the properties of the tongue, first, the tongue area to be detected. Therefore an effective segmentation method for detecting the edge of tongue is very important. It experimented with tongue image DB consists of 20~30 students 30 people. Experiments on real tongue image show the good performance of this method. Experimental results show that the proposed method extracts object boundaries more accurately than existing methods without mask operation.