• Title/Summary/Keyword: Object detecting

Search Result 555, Processing Time 0.024 seconds

Object Tracking Framework of Video Surveillance System based on Non-overlapping Multi-camera (비겹침 다중 IP 카메라 기반 영상감시시스템의 객체추적 프레임워크)

  • Han, Min-Ho;Park, Su-Wan;Han, Jong-Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.141-152
    • /
    • 2011
  • Growing efforts and interests of security techniques in a diverse surveillance environment, the intelligent surveillance system, which is capable of automatically detecting and tracking target objects in multi-cameras environment, is actively developing in a security community. In this paper, we propose an effective visual surveillance system that is avaliable to track objects continuously in multiple non-overlapped cameras. The proposed object tracking scheme consists of object tracking module and tracking management module, which are based on hand-off scheme and protocol. The object tracking module, runs on IP camera, provides object tracking information generation, object tracking information distribution and similarity comparison function. On the other hand, the tracking management module, runs on video control server, provides realtime object tracking reception, object tracking information retrieval and IP camera control functions. The proposed object tracking scheme allows comprehensive framework that can be used in a diverse range of application, because it doesn't rely on the particular surveillance system or object tracking techniques.

Real Time Face detection Method Using TensorRT and SSD (TensorRT와 SSD를 이용한 실시간 얼굴 검출방법)

  • Yoo, Hye-Bin;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.10
    • /
    • pp.323-328
    • /
    • 2020
  • Recently, new approaches that significantly improve performance in object detection and recognition using deep learning technology have been proposed quickly. Of the various techniques for object detection, especially facial object detection (Faster R-CNN, R-CNN, YOLO, SSD, etc), SSD is superior in accuracy and speed to other techniques. At the same time, multiple object detection networks are also readily available. In this paper, among object detection networks, Mobilenet v2 network is used, models combined with SSDs are trained, and methods for detecting objects at a rate of four times or more than conventional performance are proposed using TensorRT engine, and the performance is verified through experiments. Facial object detector was created as an application to verify the performance of the proposed method, and its behavior and performance were tested in various situations.

A design and implementation of Intelligent object recognition system in urban railway (도시철도내 지능형 객체인식 시스템 구성 및 설계)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.209-214
    • /
    • 2018
  • The subway, which is an urban railway, is the core of public transportation. Urban railways are always exposed to serious problems such as theft, crime and terrorism, as many passengers use them. Especially, due to the nature of urban railway environment, the scope of surveillance is widely dispersed and the range of surveillance target is rapidly increasing. Therefore, it is difficult to perform comprehensive management by passive surveillance like existing CCTV. In this paper, we propose the implementation, design method and object recognition algorithm for intelligent object recognition system in urban railway. The object recognition system that we propose is to analyze the camera images in the history and to recognize the situations where there are objects in the landing area and the waiting area that are not moving for more than a certain time. The proposed algorithm proved its effectiveness by showing detection rate of 100% for Selected area detection, 82% for detection in neglected object, and 94% for motionless object detection, compared with 84.62% object recognition rate using existing Kalman filter.

Haptic Rendering Algorithm for Collision Situation of Two Objects (두 객체가 충돌하는 상황에서의 햅틱 렌더링 알고리즘)

  • Kim, Seonkyu;Kim, Hyebin;Ryu, Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we define a haptic rendering algorithm for a situation that has collision between static object and single object. We classified video scenes into four categories which can be easily seen in video sequence. The proposed algorithm can detect which frame is suitable for haptic rendering by detecting the change of direction using motion estimation and change of shape using object tracking. As a result, a total of 13 frames are extracted from the sample video and playing time of these frames were calculated. We confirmed that the haptic effect appears in expected playing time by adding the appropriate haptic generating waveform thtough the haptic editing program.

CCTV Object Detection with Background Subtraction and Convolutional Neural Network (배경 차분과 CNN 기반의 CCTV 객체 검출)

  • Kim, Young-Min;Lee, Jiyoung;Yoon, Illo;Han, Taekjin;Kim, Chulyeon
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • In this paper, a method to classify objects in outdoor CCTV images using Convolutional Neural Network(CNN) and background subtraction is proposed. Object candidates are extracted using background subtraction and they are classified with CNN to detect objects in the image. At the end, computation complexity is highly reduced in comparison to other object detection algorithms. A database is constructed by filming alleys and playgrounds, places where crime occurs mainly. In experiments, different image sizes and experimental settings are tested to construct a best classifier detecting person. And the final classification accuracy became 80% for same camera data and 67.5% for a different camera.

Unmanned accident prevention Arduino Robot using color detection algorithm (색 검지 알고리즘을 이용한 무인 사고방지 아두이노 로봇 개발)

  • Lee, Ho-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.493-497
    • /
    • 2015
  • This study was started with concern about problem of increasing physical and personal injury caused by traffic accidents, despite of technological advances in transportation. As the vehicles, which is currently produced, informs the driver only detecting the proximity of an object by the front and rear sensor, this study implemented the color detection algorithm, the circular shape recognition algorithm, and the distance recognition algorithm and built the accident prevention beyond accident perception, which commends to avoid the object or to stop the robot, if object was detected by algorithms. For the simulation, we made the Arduino vehicle robot equipped with compact wireless communication camera and confirmed that the robot successfully avoids an object or stops itself in simulated driving.

  • PDF

A Study on Face Object Detection System using spatial color model (공간적 컬러 모델을 이용한 얼굴 객체 검출 시스템 연구)

  • Baek, Deok-Soo;Byun, Oh-Sung;Baek, Young-Hyun
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.30-38
    • /
    • 2006
  • This paper is used the color space distribution HMMD model presented in MPEG-7 in order to segment and detect the wanted image parts as a real time without the user's manufacturing in the video object segmentation. Here, it is applied the wavelet morphology to remove a small part that is regarded as a noise in image and a part excepting for the face image. Also, it did the optimal composition by the rough set. In this paper, tile proposed video object detection algorithm is confirmed to be superior as detecting the face object exactly than the conventional algorithm by applying those to the different size images.put the of paper here.

Intrusion Detection Algorithm based on Motion Information in Video Sequence (비디오 시퀀스에서 움직임 정보를 이용한 침입탐지 알고리즘)

  • Kim, Alla;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.284-288
    • /
    • 2010
  • Video surveillance is widely used in establishing the societal security network. In this paper, intrusion detection based on visual information acquired by static camera is proposed. Proposed approach uses background model constructed by approximated median filter(AMF) to find a foreground candidate, and detected object is calculated by analyzing motion information. Motion detection is determined by the relative size of 2D object in RGB space, finally, the threshold value for detecting object is determined by heuristic method. Experimental results showed that the performance of intrusion detection is better one when the spatio-temporal candidate informations change abruptly.

Vision-based garbage dumping action detection for real-world surveillance platform

  • Yun, Kimin;Kwon, Yongjin;Oh, Sungchan;Moon, Jinyoung;Park, Jongyoul
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.494-505
    • /
    • 2019
  • In this paper, we propose a new framework for detecting the unauthorized dumping of garbage in real-world surveillance camera. Although several action/behavior recognition methods have been investigated, these studies are hardly applicable to real-world scenarios because they are mainly focused on well-refined datasets. Because the dumping actions in the real-world take a variety of forms, building a new method to disclose the actions instead of exploiting previous approaches is a better strategy. We detected the dumping action by the change in relation between a person and the object being held by them. To find the person-held object of indefinite form, we used a background subtraction algorithm and human joint estimation. The person-held object was then tracked and the relation model between the joints and objects was built. Finally, the dumping action was detected through the voting-based decision module. In the experiments, we show the effectiveness of the proposed method by testing on real-world videos containing various dumping actions. In addition, the proposed framework is implemented in a real-time monitoring system through a fast online algorithm.

Game Engine Driven Synthetic Data Generation for Computer Vision-Based Construction Safety Monitoring

  • Lee, Heejae;Jeon, Jongmoo;Yang, Jaehun;Park, Chansik;Lee, Dongmin
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.893-903
    • /
    • 2022
  • Recently, computer vision (CV)-based safety monitoring (i.e., object detection) system has been widely researched in the construction industry. Sufficient and high-quality data collection is required to detect objects accurately. Such data collection is significant for detecting small objects or images from different camera angles. Although several previous studies proposed novel data augmentation and synthetic data generation approaches, it is still not thoroughly addressed (i.e., limited accuracy) in the dynamic construction work environment. In this study, we proposed a game engine-driven synthetic data generation model to enhance the accuracy of the CV-based object detection model, mainly targeting small objects. In the virtual 3D environment, we generated synthetic data to complement training images by altering the virtual camera angles. The main contribution of this paper is to confirm whether synthetic data generated in the game engine can improve the accuracy of the CV-based object detection model.

  • PDF