• Title/Summary/Keyword: Object Pose

검색결과 199건 처리시간 0.05초

A threshold decision of the object image by using the smart tag

  • Im, Chang-Jun;Kim, Jin-Young;Joung, Kwan-Young;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2368-2372
    • /
    • 2005
  • We proposed a novel method for object recognition using the Smart tag system in the previous research. We identified the object easily, but could not assure the object pose, because the threshold problem was not solved. So we propose a new method to solve this threshold problem. This method uses a smart tag to decide the threshold by recording color information of the image when the object feature is extracted. This method records the original of the object color information at the smart tag first. And then it records the object image information, the circumstance image information and the sensors information continuously when the object feature is extracted through the experiments. Finally, it estimates the current threshold by recorded information. This method can be applied the threshold to each objects. And it can solve the difficult threshold decision problem easily. To approve the possibility of our method, we implemented our approach by using easy and simple techniques as possible.

  • PDF

Visual servoing based on neuro-fuzzy model

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.712-715
    • /
    • 1997
  • In image jacobian based visual servoing, generally, inverse jacobian should be calculated by complicated coordinate transformations. These are required excessive computation and the singularity of the image jacobian should be considered. This paper presents a visual servoing to control the pose of the robotic manipulator for tracking and grasping 3-D moving object whose pose and motion parameters are unknown. Because the object is in motion tracking and grasping must be done on-line and the controller must have continuous learning ability. In order to estimate parameters of a moving object we use the kalman filter. And for tracking and grasping a moving object we use a fuzzy inference based reinforcement learning algorithm of dynamic recurrent neural networks. Computer simulation results are presented to demonstrate the performance of this visual servoing

  • PDF

Development of a Robot arm capable of recognizing 3-D object using stereo vision

  • Kim, Sungjin;Park, Seungjun;Park, Hongphyo;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.128.6-128
    • /
    • 2001
  • In this paper, we present a methodology of sensing and control for a robot system designed to be capable of grasping an object and moving it to target point Stereo vision system is employed to determine to depth map which represents the distance from the camera. In stereo vision system we have used a center-referenced projection to represent the discrete match space for stereo correspondence. This center-referenced disparity space contains new occlusion points in addition to the match points which we exploit to create a concise representation of correspondence an occlusion. And from the depth map we find the target object´s pose and position in 3-D space. To find the target object´s pose and position, we use the method of the model-based recognition.

  • PDF

Real-time Object Recognition with Pose Initialization for Large-scale Standalone Mobile Augmented Reality

  • Lee, Suwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4098-4116
    • /
    • 2020
  • Mobile devices such as smartphones are very attractive targets for augmented reality (AR) services, but their limited resources make it difficult to increase the number of objects to be recognized. When the recognition process is scaled to a large number of objects, it typically requires significant computation time and memory. Therefore, most large-scale mobile AR systems rely on a server to outsource recognition process to a high-performance PC, but this limits the scenarios available in the AR services. As a part of realizing large-scale standalone mobile AR, this paper presents a solution to the problem of accuracy, memory, and speed for large-scale object recognition. To this end, we design our own basic feature and realize spatial locality, selective feature extraction, rough pose estimation, and selective feature matching. Experiments are performed to verify the appropriateness of the proposed method for realizing large-scale standalone mobile AR in terms of efficiency and accuracy.

HigherHRNet 기반의 발추정 기법을 통한 횡단보도 보행자 인식 (Pedestrian Recognition of Crosswalks Using Foot Estimation Techniques Based on HigherHRNet)

  • 정경민;한주훈;이현
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.171-177
    • /
    • 2021
  • It is difficult to accurately extract features of pedestrian because the pedestrian is photographed at a crosswalk using a camera positioned higher than the pedestrian. In addition, it is more difficult to extract features when a part of the pedestrian's body is covered by an umbrella or parasol or when the pedestrian is holding an object. Representative methods to solve this problem include Object Detection, Instance Segmentation, and Pose Estimation. Among them, this study intends to use the Pose Estimation method. In particular, we intend to increase the recognition rate of pedestrians in crosswalks by maintaining the image resolution through HigherHRNet and applying the foot estimation technique. Finally, we show the superiority of the proposed method by applying and analyzing several data sets covered by body parts to the existing method and the proposed method.

A Distributed Real-time 3D Pose Estimation Framework based on Asynchronous Multiviews

  • Taemin, Hwang;Jieun, Kim;Minjoon, Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.559-575
    • /
    • 2023
  • 3D human pose estimation is widely applied in various fields, including action recognition, sports analysis, and human-computer interaction. 3D human pose estimation has achieved significant progress with the introduction of convolutional neural network (CNN). Recently, several researches have proposed the use of multiview approaches to avoid occlusions in single-view approaches. However, as the number of cameras increases, a 3D pose estimation system relying on a CNN may lack in computational resources. In addition, when a single host system uses multiple cameras, the data transition speed becomes inadequate owing to bandwidth limitations. To address this problem, we propose a distributed real-time 3D pose estimation framework based on asynchronous multiple cameras. The proposed framework comprises a central server and multiple edge devices. Each multiple-edge device estimates a 2D human pose from its view and sendsit to the central server. Subsequently, the central server synchronizes the received 2D human pose data based on the timestamps. Finally, the central server reconstructs a 3D human pose using geometrical triangulation. We demonstrate that the proposed framework increases the percentage of detected joints and successfully estimates 3D human poses in real-time.

다른 색으로 구성된 다각형들의 분할과 이를 이용한 영상 인식 기반 칠교 퍼즐 놀이 개발 (Segmentation of Polygons with Different Colors and its Application to the Development of Vision-based Tangram Puzzle Game)

  • 이지혜;이강;김경미
    • 한국멀티미디어학회논문지
    • /
    • 제20권12호
    • /
    • pp.1890-1900
    • /
    • 2017
  • Tangram game consists of seven pieces of polygons such as triangle, square, and parallelogram. Typical methods of image processing for object recognition may suffer from the existence of side thickness and shadow of the puzzle pieces that are dependent on the pose of 3D-shaped puzzle pieces and the direction of light sources. In this paper, we propose an image processing method that recognizes simple convex polygon-shaped objects irrespective of thickness and pose of puzzle objects. Our key algorithm to remove the thick side of piece of puzzle objects is based on morphological operations followed by logical operations with edge image and background image. By using the proposed object recognition method, we are able to implement a stable tangram game applications designed for tablet computers with front camera. As the experimental results, recognition rate is about 86 percent and recognition time is about 1ms on average. It shows the proposed algorithm is fast and accurate to recognize tangram blocks.

포즈 변화에 강인한 얼굴 인식 (Face Recognition Robust to Pose Variations)

  • 노진우;문인혁;고한석
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.63-69
    • /
    • 2004
  • 본 논문에서는 포즈 변화에 강인한 얼굴 인식을 위하여 원통 모델을 이용하는 방법을 제안한다. 얼굴 모양이 원통형이라는 가정 하에 입력 영상으로부터 대상의 포즈를 예측하고, 예측된 포즈 각도만큼 포즈 변환을 실시하여 정면 얼굴 영상을 획득한다. 이렇게 획득한 정면 영상을 얼굴 인식에 적용함으로써 얼굴 인식률을 향상시킬 수 있다. 실험 결과, 포즈 변환을 통하여 인식률이 61.43%에서 93.76%로 향상되었음을 볼 수 있었으며, 보다 복잡한 3차원 얼굴 모델을 이용한 결과와 비교하였을 때 비교적 양호한 인식률을 갖는 것을 확인하였다.

잡음이 있는 3차원 점군 데이터에서 밸브 모델링 및 모델 추출 (Valve Modeling and Model Extraction on 3D Point Cloud data)

  • 오기원;최강선
    • 전자공학회논문지
    • /
    • 제52권12호
    • /
    • pp.77-86
    • /
    • 2015
  • LIDAR를 이용해서 얻은 3차원 점군 데이터는 작은 물체를 추출하기에는 오차의 영향이 크기 때문에 작은 밸브를 자동으로 추출하는데 많은 어려움이 있다. 본 논문에서는 이러한 잡음이 있는 3차원 점군 데이터 사이에서 밸브의 위치 및 방향(Pose)의 정보를 얻는 방법을 제안한다. Pose를 얻기 위해서 밸브가 원환체 모양의 손잡이, 원통 모양의 Rib, 평면 모양의 중심축 평면인 기본 도형으로 이루어진 모델이라고 가정한다. 그리고 밸브의 중심 좌표에 대한 추가적인 입력을 받아서 밸브의 Pose를 추출한다. 중심점을 기준으로 거리에 따른 히스토그램을 생성하고, 히스토그램의 값에 따라 손잡이, Rib, 중심축 평면의 파라미터를 통계적인 방법으로 추출하여 최종 밸브의 Pose를 추출한다. 추출된 밸브의 Pose를 이용하여 3차원 점군 데이터에 밸브의 모형을 각 모양으로 복원한다.

Pose Determination of a Mobile-Task Robot Using an Active Calibration of the Landmark

  • Jin, Tae-Seok;Park, Jin-Woo;Lee, Jand-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.734-739
    • /
    • 2003
  • A new method of estimating the pose of a mobile-task robot is developed based upon an active calibration scheme. The utility of a mobile-task robot is widely recognized, which is formed by the serial connection of a mobile robot and a task robot. For the control of the mobile robot, an absolute position sensor is necessary. This paper proposes an active calibration scheme to estimate the pose of a mobile robot that carries a task robot on the top. The active calibration scheme is to estimate a pose of the mobile robot using the relative position/orientation to a known object whose location, size, and shape are known a priori. Through the homogeneous transformation, the absolute position/orientation of the camera is calculated and that is propagated to getting the pose of a mobile robot. With the experiments in the corridor, the proposed active calibration scheme is verified experimentally.

  • PDF