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Abstract 
A new method of estimating the pose of a mobile-task 

robot is developed based upon an active calibration 
scheme. The utility of a mobile-task robot is widely 
recognized, which is formed by the serial connection of a 
mobile robot and a task robot. For the control of the 
mobile robot, an absolute position sensor is necessary. 
This paper proposes an active calibration scheme to 
estimate the pose of a mobile robot that carries a task 
robot on the top. The active calibration scheme is to 
estimate a pose of the mobile robot using the relative 
position/orientation to a known object whose location, 
size, and shape are known a priori. Through the 
homogeneous transformation, the absolute position/ 
orientation of the camera is calculated and that is 
propagated to getting the pose of a mobile robot. With the 
experiments in the corridor, the proposed active 
calibration scheme is verified experimentally.  
 

1. Introduction 
Recently, in the factory automation, not only 

productivity but also flexibility is required to produce 
small quantity of several items in the same production line 
to overcome the versatile tastes of customers. A mobile 
robot carrying a task robot is a good alternative to 
conveyor lines for this purpose. Many of papers on mobile 
robots focused on how to avoid collisions against to 
obstacles, considering a mobile robot as a single carrier of 
an object. However, in the mobile-task robot, the mobile 
robot needs to be controlled very accurately since the end 
plate of the mobile robot is used as a base for the task 
robot [1]. 

In this paper, we proposed a method of measuring the 
position/orientation of the task robot base, that is, the pose 
of the mobile robot using the images of known objects 

captured by a camera attached at the end of the task robot 
[12], [13]. A camera is represented as the pin-hole model, 
which approximates the camera system as linear such that 
camera parameters can be analyzed experimentally. Using 
the feature points on the objects whose locations are given 
a priori, we calculate the pose of the camera. After the 
calculation of the pose of the camera, we can obtain the 
homogeneous transformation matrix for the base of the 
task robot with respect to a world frame assuming that the 
kinematic parameters of the task robot are precisely 
given.  

 
2. Active Calibration method of a 

Mobile/Task Robot 
 

2.1 Perspective model of a camera 
A perspective model of a camera represents the 

relationship in between the two dimensional object 
location on a image plane and the actual object location in a 
three dimensional space. Figure 1 represents a perspective 
model of a camera. Here, the coordinates, {W}, is a world 
frame in the 3-D space, the coordinates, {C}, is a camera 
frame whose origin is assigned at the center of the lens of 
the camera. Note that  axis is coincident with the optical 
axis of the camera.   
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Fig. 1 Perspective model of camera. 
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A point in the space can be represented as a vector, 

wp ( , , )w w wx y z=  w.r.t the reference frame, and it can be 
also represented as cp ( , , )c c cx y z=  w.r.t the camera 
frame. The coordinates, {I}, represents the image frame 
of the camera and  is focal length of the camera. f

The vector, ip ( , )i ix y= , on the image plane represents 
a feature point on the fixed object. p  w.r.t. the world 
frame corresponds to the vector, p , w.r.t. the camera 
frame. The coordinate, ( ,  represents the center 
coordinates of the image in the image frame 
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2.2 Camera parameters 

The camera parameters to be estimated can be 
classified into two categories: internal and external 
parameters. The specification related parameters of the 
camera and lens, for examples, the focal distance, , and 
the image scale factor S , are internal parameters; the 
rotation matrix, R , and the translational vector, T  
representing the pose of the moving camera are external 
parameters. By the coordinates transformation between 
the robot and camera frames, the positioning vector, 

f

cp , 
represented in terms of the camera frame can be 
represented as wp  in terms of the world frame. 

w cp p TR= +     (1) 

A positioning vector for a feature point on the three 
dimensional object in terms of the camera frame, 

cp ( , , )c c cx y z= is mapped to a point p (i ,i i )x y=  on the two 
dimensional image frame using the camera perspective 
model [2], and it can be described as follows: 
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Since the scale values along x  axis and  axis are 
different in the image frame, a point on the image frame, 

y

( , )i ix y
( ,f f

 corresponds to a location in the image frame, 
)x y  according to the following relations: 

1
i x ix S x−=     (4) 

1
i x ix S x−=      (5) 

where ( ), (i x f x i y f y )x d x c y d y c= − = − , and xS  and  

represents the camera scale factor along the 

yS

x  axis and 
 axis, respectively.  y
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3. Robot/Vision System 

A task robot that has 5 links and a gripper, and a mobile 
robot that has 3 d.o.f are serially connected for this 
research. Figure 2 shows the coordinates assigned to this 
overall system. 
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Fig. 2 Link Coordinates of Mobile Robot Supporting a 

Task Robot. 
The coordinates transformation relationship among the 

frames of the mobile robot supporting a task robot is 
shown in Figure 3. 
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Fig. 3 Coordinates Transformation of Robot/Vision 
System. 

 
The calibration task can be decomposed into two steps. 

The first step is measuring the relative pose of the camera, 
, using the images of the fixed object. The second 

step is obtaining the homogeneous transformation of the 
mobile robot w.r.t. the world frame, W

C

, using 

C , B
HH  and H

CH . This process can be represented by 
the following equations. 

TW W B
B C CH H H= ⋅    (6) 

B B H
C H CH H H= ⋅      (7) 



The structure of the task robot is generally assumed to 
be light and small. Therefore, B

CH , can be obtained 
accurately through the forward kinematics. In the 
following section, the process of obtaining W

CH  will be 
described in detail. 
As it is shown in Figure 3, W

CH  is obtained as 
TW C W

C OH H H= ⋅ O     (8) 

 
4. Parameter Estimation Using Line- 
correspondence 

Among the camera parameters, we obtain the internal 
parameters,  and , and the rotation matrix, , in the 
first step. Later, the translational vector, T , is obtained 
using the correspondence of the feature points [3], [4]. 

S f R

Let us denote a straight line, J  (refer to Figure 4) as 

j wJ:P n Pt= + i     (9) 

where,  represents the directional vector of the 
straight line, t  represents a constant, and P  and  are 
positioning vectors for the point U  and  w.r.t. the 
world frame, respectively. 
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A two dimensional line L  can be represented as 
follows: 

L: 0i iAx By C+ + =    (10) 
V

where, ,A B  and  can be determined by a constraint 
equation,  and two equations 
corresponding to the two points. Substituting equation (2) 
and (3) into equation (10), we obtain the following plane 
equation: 
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Fig. 4. Projecting plane of a 3-D line and a 2-D line. 

 
The vector N  is defined as a normal to the projecting 

plane , M

A

cn R=

n N⋅ =

n NT R

, )i iY

j=

A= 

i j

1N=
T

B f C−       (12) 

Note that this normal vector N  is always orthogonal to 
the three dimensional line J . The directional vector for 
the 3-D line J  can be denoted as n  and represented in 
terms of the camera frame as 

c

wnT     (13) 

Since the 3-D line  is located on the projecting plane, 
, and the directional vector of J  is orthogonal to the 

normal vector of the projecting plane, we have 

J
M

c 0     (14) 

w 0=      (15) 

Let us consider two points in 3-D space, U  and V , 
and the corresponding two points in the image plane, 

iP (X  and jP ( , )j jX Y . Plugging P  and  
coordinates into equation (10), and solving the two 
equations for the line coefficients, 

i jP

,A B  and , we have C

( )iA Y Y− , ( )j iB X X= − , ( )j i i jC X Y X Y= −  (16) 

Since the directional vector, n , of the 3-D line is 
parallel to the line passing through the two points, U  and 

, it can be denoted as 

w

w i j in (P P ) / P P= − − j    (17) 

Utilizing ix  in (4) to separate S  from ix , and 
substituting this into equation (16-a) through (16-c), the 
normal vector (12) is represented as 

1 1 1 T
S B S f C− − −     (18) 

Now, let us describe the process of obtaining camera 
parameters using (15). Substituting (17) and (18) into (15), 
we have 
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where the parameters A, B, and C are obtained by 
(16-a) through (16-c) and the directional vector 

 is obtained by (17) [wn Ti j k= ]
Equation (19) can be changed to equation (20) by 

decomposing known variables and unknown variables as 



follows: 
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Note that even though there are nine variables r r  
in , only three of them are independent. By the 
superposition, a matrix which equation can be represented 
as 

1 9

R

8 8 8 1 8 1X BM × × ×=     (21) 

where  is the second vector in (20). Now, the 
unknown camera parameters can be obtained by 
multiplying the inverse of 

8 1X ×

M  at both sides of (21). 
Therefore, instead of multiplying inverse of  directly, 
the matrix is decomposed by the singular value 
decomposition (SVD) as 

8 8M ×

8 8
TM UDV× = , and the matrix 

 is obtained as follows: 8 1X ×

1X TV D U−= ⋅ ⋅ ⋅B

T

   (22) u

where  is a diagonal matrix with positive 
element  and  are eigen-vector 
matrices. 

8 8D R ×∈
D R∈ 8 8× 8 8V R ×∈

Now, the correspondence of the feature points are used 
to calculate the translational vector T  of the camera 
frame. By changing (1) as (23), and substituting this 
equation into (2) and (3), we have the coordinates of the 
feature point on the image frame as (24) and (25): 

1 1 '
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where ' ' ' '
wp ( , , )T

w w wx y z=  and T  represent a positioning 
vector and a translation vector in terms of the camera 
frame, respectively. To obtain the translation vector T  
from (24) and (25), the following matrix equation is 
derived: 
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  (26) 

Therefore, if we have two feature points, four linear 
equations are obtained for the three unknowns, '' ,x yTT , and, 

'
zT . 

 
5. Active Calibration using Conic- 
correspondence 
 
5.1 conic parameter estimation 

We apply the least square method for the curve fitting 
algorithm to obtain the conic parameter matrix. 
Let's consider the second order equation (27) defining the 
conics in a plane. In an image plane, a second-order conic 
equation is represented as 

2 2 0aX bXY cY dX eY f+ + + + + =   (27) 

where , and  are conic parameters that 
determine the shape of the second order equation. 

, , , ,a b c d e f

Equation (27) is re-formulated with a general vector 
 and a coefficient matrix, [ TX Y= A  as follow: ]1

u u 0T A =     (28) 

where the A  matrix is defined as a symmetric conic 
coefficient matrix, that is, 

/ 2 / 2
/ 2 / 2
/ 2 / 2

a b d
A b c e

d e f

 
 =  
  

   (29) 

In order to estimate the conic coefficient matrix A, we 
need to get the image coordinates, ( , )i ix y 's, on the conic.  

 
5.2 Active calibration using conic object 

If we use a camera for the active calibration, multiple 
images need to be captured at different postures of the 
camera. Figure 5 displays the geometric structure of the 
camera capturing two images at the different postures. 
The relationship between two-camera coordinate system 
is represented as 

1
c1 2 c2 2p pR 1t= +     (30) 

where  represents a rotation matrix from 1
2R { }1C  to 

{ }2C  and 1  is a translation vector from {  to 2t }1C { }2C . 



A1
A2

Q

p

{C1}

xc1

y
c1

z
c1

{C2}y
c2

x
c2

z
c2

pc1
pc2

xw

yw
zw

{W}

},{ 2
1

2
1 tR

 
Fig. 5. Geometric structure for capturing conic images. 
 

6. Experiments 
 
6.1 Robot Localization used Landmark 

To begin with, the 2-D landmark used by IRL-2001 is 
shown in Figure 6. The primary pattern of landmark is a 
10cm black square block on white background and a 5cm 
square block. The image corners are then automatically 
extracted by camera parameters, and displayed on Figure 
6 and the blue squares around the corner points show the 
limits of the corner finder window. The corners are 
extracted to an accuracy of about 0.1 pixel. 

 

10Cm

10Cm 5Cm

5Cm  
Fig. 6. The landmark pattern and size used by 

IRL-2001. 
 

The extrinsic parameters, relative positions of the 
landmark with respect to the camera, are then shown in a 
form of a 3D plot as Figure 8. And on Figure 9, every 
camera position and orientation are represented by red 
pyramid, therefore we can see the location and the 
orientation of a mobile robot in the indoor environment.  

 
(1)                         (2)                          (3) 

 
(4)                         (5)                          (6) 

Fig. 7. A landmark locations detected by camera. 
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Fig. 8. Relative position of the landmark w.r.t the camera 
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Fig. 9. Mobile robot positionand orientation. 

 
To measure the relative distance of the landmark from 

the mobile robot, we first measure the distance of image 
from the fixed position in IRL-lab corridor. The 
predefined values of the landmark defined in this section 
are given as follows the origin of coordinates is equal to 
the origin of mobile robot, a Y-axis is fit to the front of 
mobile robot and an X-axis is perpendicular with Y-axis. 

Table 1 lists the data measured in IRL-lab corridor. The 
Left direction marks negative. From table 1, we find the 
maximum and the minimum error on distance is 0.32 m 
and 0.13m, respectively. 
It shows that the distance error becomes less and less by 
frames, which composes the environment map. And so, 
we can use it to measure the relative distance of the 
mobile robot. 
 
 



 
Table 1. The result of relative distance (Dim.:m). 

Frame 
Number 

World  
Coordinate 
Distance 

Image 
Coordinate 
Distance 

Error 

1 7.81 8.13 0.32 
2 7.02 7.30 0.28 
3 6.28 6.53 0.25 
4 5.06 4.89 0.17 
5 5.52 5.39 0.13 
6 6.32 6.46 0.14 

 

7. Conclusions 
A new active calibration scheme is developed to 

estimate the position/orientation of a mobile robot 
working in the various environments. In this research, the 
position of mobile robot is obtained by the active 
calibration scheme using the images captured by a camera 
at the hand of the task robot. In detail, the correspondence 
of the image coordinates to the real object coordinates is 
the basis for this scheme. This scheme is applied to the 
work-pieces of both the polygonal and the cylindrical. 

For a polygonal object composed of points or lines, 
while the task robot is approaching to the object, the 
position of the camera is estimated using the 
line-correspondence between the lines on the image 
captured by the camera and the lines of the real object. For 
the cylindrical or ball-shaped objects, there are not 
enough line segments for the calibration based on the 
line-correspondence. For these objects, the conic- 
correspondence scheme is developed. That is, two conic 
parameter matrices that can be obtained from the two 
consecutive elliptic images and a homogeneous 
transformation matrix are used for obtaining the position 
and orientation of the camera. Note that the homogeneous 
transformation matrix which defines the relationship 
between the two frames where the images are captured 
can be calculated by using the joint angles of the robot. 
Our future research topics are reducing the estimation 
errors and capturing two successive frames effectively 
adapting the environmental variations. 
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