• Title/Summary/Keyword: Object Extracting

Search Result 337, Processing Time 0.029 seconds

Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback (정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.

KNOWLEDGE-BASED BOUNDARY EXTRACTION OF MULTI-CLASSES OBJECTS

  • Park, Hae-Chul;Shin, Ho-Chul;Lee, Jin-Sung;Cho, Ju-Hyun;Kim, Seong-Dae
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1968-1971
    • /
    • 2003
  • We propose a knowledge-based algorithm for extracting an object boundary from low-quality image like the forward looking infrared image. With the multi-classes training data set, the global shape is modeled by multispace KL(MKL)[1] and curvature model. And the objective function for fitting the deformable boundary template represented by the shape model to true boundary in an input image is formulated by Bales rule. Simulation results show that our method has more accurateness in case of multi-classes training set and performs better in the sense of computation cost than point distribution model(PDM)[2]. It works well in distortion under the noise, pose variation and some kinds of occlusions.

  • PDF

Valve Modeling and Model Extraction on 3D Point Cloud data (잡음이 있는 3차원 점군 데이터에서 밸브 모델링 및 모델 추출)

  • Oh, Ki Won;Choi, Kang Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.77-86
    • /
    • 2015
  • It is difficult to extract small valve automatically in noisy 3D point cloud obtained from LIDAR because small object is affected by noise considerably. In this paper, we assume that the valve is a complex model consisting of torus, cylinder and plane represents handle, rib and center plane to extract a pose of the valve. And to extract the pose, we received additional input: center of the valve. We generated histogram of distance between the center and each points of point cloud, and obtain pose of valve by extracting parameters of handle, rib and center plane. Finally, the valve is reconstructed.

Practical and Verifiable C++ Dynamic Cast for Hard Real-Time Systems

  • Dechev, Damian;Mahapatra, Rabi;Stroustrup, Bjarne
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.375-393
    • /
    • 2008
  • The dynamic cast operation allows flexibility in the design and use of data management facilities in object-oriented programs. Dynamic cast has an important role in the implementation of the Data Management Services (DMS) of the Mission Data System Project (MDS), the Jet Propulsion Laboratory's experimental work for providing a state-based and goal-oriented unified architecture for testing and development of mission software. DMS is responsible for the storage and transport of control and scientific data in a remote autonomous spacecraft. Like similar operators in other languages, the C++ dynamic cast operator does not provide the timing guarantees needed for hard real-time embedded systems. In a recent study, Gibbs and Stroustrup (G&S) devised a dynamic cast implementation strategy that guarantees fast constant-time performance. This paper presents the definition and application of a cosimulation framework to formally verify and evaluate the G&S fast dynamic casting scheme and its applicability in the Mission Data System DMS application. We describe the systematic process of model-based simulation and analysis that has led to performance improvement of the G&S algorithm's heuristics by about a factor of 2. In this work we introduce and apply a library for extracting semantic information from C++ source code that helps us deliver a practical and verifiable implementation of the fast dynamic casting algorithm.

Height and Position Estimation of Moving Objects using a Single Camera

  • Lee, Seok-Han;Lee, Jae-Young;Kim, Bu-Gyeom;Choi, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.158-163
    • /
    • 2009
  • In recent years, there has been increased interest in characterizing and extracting 3D information from 2D images for human tracking and identification. In this paper, we propose a single view-based framework for robust estimation of height and position. In the proposed method, 2D features of target object is back-projected into the 3D scene space where its coordinate system is given by a rectangular marker. Then the position and the height are estimated in the 3D space. In addition, geometric error caused by inaccurate projective mapping is corrected by using geometric constraints provided by the marker. The accuracy and the robustness of our technique are verified on the experimental results of several real video sequences from outdoor environments.

  • PDF

Automatic Extraction and Measurement of Visual Features of Mushroom (Lentinus edodes L.) (표고 외관 특징점의 자동 추출 및 측정)

  • Hwang, Heon;Lee, Yong-Guk
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 1992
  • Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3$\times$3 to 9$\times$9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MS_C language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.

  • PDF

Data Structure Extraction of Boundary Segments by Region Labeling (영역 라벨링에 의한 경계선 세그먼트의 데이터 구조 추출)

  • 최환언;정광웅;김두영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.80-89
    • /
    • 1992
  • This paper presents algorithms which are region labeling and data structure of a boundary segmentation as image intermediate description process. In the method, the algorithms are region labeling, boundary segmentation, line and curve fitting and extracting data structure of each segment. As a result, a data structure of image is described by a set of region number, segment number, line or curve, starting point and end point of each segment and coefficient of line or curve. These data structures would serve for higher level processing as object recognition. For example we will use this data structure to solve the correspondence problem of stereoscopic image information. And we verified these algorithms through the image reconstruction of data structure.

  • PDF

Real-Time Face Tracking System using Adaptive Face Detector and Kalman Filter (적응적 얼굴 검출기와 칼만 필터를 이용한 실시간 얼굴 추적 시스템)

  • Kim, Jong-Ho;Kim, Sang-Kyoon;Shin, Bum-Joo
    • Journal of Information Technology Services
    • /
    • v.6 no.3
    • /
    • pp.241-249
    • /
    • 2007
  • This paper describes a real-time face tracking system using effective detector and Kalman filter. In the proposed system, an image is separated into a background and an object using a real-time updated face color for effective face detection. The face features are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted using Principal Component Analysis (PCA), and interpreted principal components are used for Support Vector Machine (SVM) that classifies the faces and non-faces. The moving face is traced with Kalman filter, which uses the static information of the detected faces and the dynamic information of changes between previous and current frames. The proposed system sets up an initial skin color and updates a region of a skin color through a moving skin color in a real time. It is possible to remove a background which has a similar color with a skin through updating a skin color in a real time. Also, as reducing a potential-face region using a skin color, the performance is increased up to 50% when comparing to the case of extracting features from a whole region.

Feature Extraction for Scene Change Detection in an MPEG Video Sequence (장면 전환 검출을 위한 MPEG 비디오 시퀀스로부터 특징 요소 추출)

  • 최윤석;곽영경;고성제
    • Journal of Broadcast Engineering
    • /
    • v.3 no.2
    • /
    • pp.127-137
    • /
    • 1998
  • In this paper, we propose the method of extracting edge information from MPEG video sequences for the detection of scene changes. In a the proposed method, five significant AC coefficients of each MPEG block are utilized to obtain edge images from the MPEG video. AC edge images obtained by the proposed scheme not only produce better object boundary information than conventional methods using only DC coefficients, but also can reduce the boundary effects produced by DC-based. Since the AC edge image contains the content information of each frame, it can be effectively utilized for the detection of scene change as well as the content-based video query. Experimental results show that the proposed method can be effectively utilized for the detection of scene changes.

  • PDF

FINE SEGMENTATION USING GEOMETRIC ATTRACTION-DRIVEN FLOW AND EDGE-REGIONS

  • Hahn, Joo-Young;Lee, Chang-Ock
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.41-47
    • /
    • 2007
  • A fine segmentation algorithm is proposed for extracting objects in an image, which have both weak boundaries and highly non-convex shapes. The image has simple background colors or simple object colors. Two concepts, geometric attraction-driven flow (GADF) and edge-regions are combined to detect boundaries of objects in a sub-pixel resolution. The main strategy to segment the boundaries is to construct initial curves close to objects by using edge-regions and then to make a curve evolution in GADF. Since the initial curves are close to objects regardless of shapes, highly non-convex shapes are easily detected and dependence on initial curves in boundary-based segmentation algorithms is naturally removed. Weak boundaries are also detected because the orientation of GADF is obtained regardless of the strength of boundaries. For a fine segmentation, we additionally propose a local region competition algorithm to detect perceptible boundaries which are used for the extraction of objects without visual loss of detailed shapes. We have successfully accomplished the fine segmentation of objects from images taken in the studio and aphids from images of soybean leaves.

  • PDF