• Title/Summary/Keyword: Object Classification

검색결과 859건 처리시간 0.028초

Object Classification Algorithm with Multi Laser Scanners by Using Fuzzy Method (퍼지 기법을 이용한 다수 레이저스캐너 기반 객체 인식 알고리즘)

  • Lee, Giroung;Chwa, Dongkyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제13권5호
    • /
    • pp.35-49
    • /
    • 2014
  • This paper proposes the on-road object detection and classification algorithm by using a detection system consisting of only laser scanners. Each sensor data acquired by the laser scanner is fused with a grid map and the measurement error and spot spaces are corrected using a labeling method and dilation operation. Fuzzy method which uses the object information (length, width) as input parameters can classify the objects such as a pedestrian, bicycle and vehicle. In this way, the accuracy of the detection system is increased. Through experiments for some scenarios in the real road environment, the performance of the proposed detection and classification system for the actual objects is demonstrated through the comparison with the actual information acquired by GPS-RTK.

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

Development of Classification Technique of Point Cloud Data Using Color Information of UAV Image

  • Song, Yong-Hyun;Um, Dae-Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제35권4호
    • /
    • pp.303-312
    • /
    • 2017
  • This paper indirectly created high density point cloud data using unmanned aerial vehicle image. Then, we tried to suggest new concept of classification technique where particular objects from point cloud data can be selectively classified. For this, we established the classification technique that can be used as search factor in classifying color information in point cloud data. Then, using suggested classification technique, we implemented object classification and analyzed classification accuracy by relative comparison with self-created proof resource. As a result, the possibility of point cloud data classification was observable using the image's information. Furthermore, it was possible to classify particular object's point cloud data in high classification accuracy.

Fast MOG Algorithm Using Object Prediction (객체 예측을 이용한 고속 MOG 알고리즘)

  • Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제18권11호
    • /
    • pp.2721-2726
    • /
    • 2014
  • In a MOG algorithm using the GMM to subtract background, the model parameter computation and the object classification to be performed at every pixel require a huge computation and are the chief obstacles to its uses. This paper proposes a fast MOG algorithm that partly adopts the simple model parameter computation and the object classification skip on the basis of the object prediction. The former is applied to the pixels that gives little effect on the model parameter and the latter is applied to the pixels whose object prediction is firmly trusted. In comparative experiment between the conventional and proposed algorithms using videos, the proposed algorithm carries out the simple model parameter computation and the object classification skip over 77.75% and 92.97%, respectively, nevertheless it retains more than 99.98% and 99.36% in terms of image and moving object-unit average classification accuracies, respectively.

Measure Radiation and Correct Radiation in IR camera Image (적외선 카메라를 이용한 복사량 계측 및 교정 연구)

  • Jeong, Jun-Ho;Kim, Jae-Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • 제20권4호
    • /
    • pp.57-67
    • /
    • 2015
  • The concept of detection and classification of objects based on infrared camera is widely applied to military applications. While the object detection technology using infrared images has long been researched and the latest one can detect the object in sub-pixel, the object classification technology still needs more research. In this paper, we present object classification method based on measured radiant intensity of objects such as target, artillery, and missile using infrared camera. The suggested classification method was verified by radiant intensity measuring experiment using black body. Also, possible measuring errors were compensated by modelling-based correction for accurate radiant intensity measure. After measuring radiation of object, the model of radiant intensity is standardized based on theoretical background. Based on this research, the standardized model can be applied to the object classification by comparing with the actual measured radiant intensity of target, artillery, and missile.

A Hybrid Proposed Framework for Object Detection and Classification

  • Aamir, Muhammad;Pu, Yi-Fei;Rahman, Ziaur;Abro, Waheed Ahmed;Naeem, Hamad;Ullah, Farhan;Badr, Aymen Mudheher
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1176-1194
    • /
    • 2018
  • The object classification using the images' contents is a big challenge in computer vision. The superpixels' information can be used to detect and classify objects in an image based on locations. In this paper, we proposed a methodology to detect and classify the image's pixels' locations using enhanced bag of words (BOW). It calculates the initial positions of each segment of an image using superpixels and then ranks it according to the region score. Further, this information is used to extract local and global features using a hybrid approach of Scale Invariant Feature Transform (SIFT) and GIST, respectively. To enhance the classification accuracy, the feature fusion technique is applied to combine local and global features vectors through weight parameter. The support vector machine classifier is a supervised algorithm is used for classification in order to analyze the proposed methodology. The Pascal Visual Object Classes Challenge 2007 (VOC2007) dataset is used in the experiment to test the results. The proposed approach gave the results in high-quality class for independent objects' locations with a mean average best overlap (MABO) of 0.833 at 1,500 locations resulting in a better detection rate. The results are compared with previous approaches and it is proved that it gave the better classification results for the non-rigid classes.

The study on the object recognition using Fuzzy Classification system based on Support Vector (서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식)

  • Kim, Sung-Jin;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

A Sweet Persimmon Grading Algorithm using Object Detection Techniques and Machine Learning Libraries (객체 탐지 기법과 기계학습 라이브러리를 활용한 단감 등급 선별 알고리즘)

  • Roh, SeungHee;Kang, EunYoung;Park, DongGyu;Kang, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • 제25권6호
    • /
    • pp.769-782
    • /
    • 2022
  • A study on agricultural automation became more important. In Korea, sweet persimmon farmers spend a lot of time and effort on classifying profitable persimmons. In this paper, we propose and implement an efficient grading algorithm for persimmons before shipment. We gathered more than 1,750 images of persimmons, and the images were graded and labeled for classifications purpose. Our main algorithm is based on EfficientDet object detection model but we implemented more exquisite method for better classification performance. In order to improve the precision of classification, we adopted a machine learning algorithm, which was proposed by PyCaret machine learning workflow generation library. Finally we acquired an improved classification model with the accuracy score of 81%.

A Study on the Classification Model of Minhwa Genre Based on Deep Learning (딥러닝 기반 민화 장르 분류 모델 연구)

  • Yoon, Soorim;Lee, Young-Suk
    • Journal of Korea Multimedia Society
    • /
    • 제25권10호
    • /
    • pp.1524-1534
    • /
    • 2022
  • This study proposes the classification model of Minhwa genre based on object detection of deep learning. To detect unique Korean traditional objects in Minhwa, we construct custom datasets by labeling images using object keywords in Minhwa DB. We train YOLOv5 models with custom datasets, and classify images using predicted object labels result, the output of model training. The algorithm consists of two classification steps: 1) according to the painting technique and 2) genre of Minhwa. Through classifying paintings using this algorithm on the Internet, it is expected that the correct information of Minhwa can be built and provided to users forward.

Optimizing artificial neural network architectures for enhanced soil type classification

  • Yaren Aydin;Gebrail Bekdas;Umit Isikdag;Sinan Melih Nigdeli;Zong Woo Geem
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.263-277
    • /
    • 2024
  • Artificial Neural Networks (ANNs) are artificial learning algorithms that provide successful results in solving many machine learning problems such as classification, prediction, object detection, object segmentation, image and video classification. There is an increasing number of studies that use ANNs as a prediction tool in soil classification. The aim of this research was to understand the role of hyperparameter optimization in enhancing the accuracy of ANNs for soil type classification. The research results has shown that the hyperparameter optimization and hyperparamter optimized ANNs can be utilized as an efficient mechanism for increasing the estimation accuracy for this problem. It is observed that the developed hyperparameter tool (HyperNetExplorer) that is utilizing the Covariance Matrix Adaptation Evolution Strategy (CMAES), Genetic Algorithm (GA) and Jaya Algorithm (JA) optimization techniques can be successfully used for the discovery of hyperparameter optimized ANNs, which can accomplish soil classification with 100% accuracy.