• 제목/요약/키워드: OWC

검색결과 99건 처리시간 0.015초

Oscillating Water Column (OWC) Wave Energy Converter Part 1: Fixed OWC

  • Yang, Hyunjai;Jung, Hyen-Cheol;Koo, WeonCheol
    • 한국해양공학회지
    • /
    • 제36권4호
    • /
    • pp.280-294
    • /
    • 2022
  • This study reviews the recent development and research results of a fixed oscillating water column (OWC) wave energy converter (WEC). The OWC WEC can be divided into fixed and floating types based on the installation location and movement of the structure. In this article, the study on a stationary OWC WEC, which is close to commercialization through the accumulation of long-term research achievements, is divided into five research categories with a focus on primary energy conversion research. These research categories include potential-flow-based numerical analysis, wave tank experiments, computational fluid dynamics analyses toward investigation of fluid viscous effects, U-shaped OWC studies that can amplify water surface displacement in the OWC chamber, and studies on OWC prototypes that have been installed and operated in real sea environments. This review will provide an overview of recent research on the stationary OWC WEC and basic information for further detailed studies on the OWC.

Effect of Internal Fluid Resonance on the Performance of a Floating OWC Device

  • Cho, Il Hyoung
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.216-228
    • /
    • 2021
  • In the present study, the performance of a floating oscillating water column (OWC) device has been studied in regular waves. The OWC model has the shape of a hollow cylinder. The linear potential theory is assumed, and a matched eigenfunction expansion method(MEEM) is applied for solving the diffraction and radiation problems. The radiation problem involves the radiation of waves by the heaving motion of a floating OWC device and the oscillating pressure in the air chamber. The characteristics of the exciting forces, hydrodynamic forces, flow rate, air pressure in the chamber, and heave motion response are investigated with various system parameters, such as the inner radius, draft of an OWC, and turbine constant. The efficiency of a floating OWC device is estimated in connection with the extracted wave power and capture width. Specifically, the piston-mode resonance in an internal fluid region plays an important role in the performance of a floating OWC device, along with the heave motion resonance. The developed prediction tool will help determine the various design parameters affecting the performance of a floating OWC device in waves.

Performance Prediction of an OWC Wave Power Plant with 3-D Characteristics in Regular Waves

  • Hong, Do-Chun;Hong, Keyyong
    • 한국항해항만학회지
    • /
    • 제36권9호
    • /
    • pp.729-735
    • /
    • 2012
  • The primary wave energy conversion by a three-dimensional bottom-mounted oscillating water column (OWC) wave power device in regular waves has been studied. The linear potential boundary value problem has been solved following the boundary matching method. The optimum shape parameters such as the chamber length and the depth of the front skirt of the OWC chamber obtained through two-dimensional numerical tests in the frequency domain have been applied in the design of the present OWC chamber. Time-mean wave power converted by the OWC device and the time-mean second-order wave forces on the OWC chamber structure have been presented for different wave incidence angles in the frequency-domain. It has been shown that the peak period of $P_m$ for the optimum damping parameter coincides with the peak period of the time.mean wave drift force when ${\gamma}=0$.

공기챔버 위치에 따른 폰툰형 초대형 구조물 유탄성응답 해석 (Hydroelastic Analysis of Pontoon Type VLFS Considering the Location and Shape of OWC Chamber)

  • 홍사영;경조현;김병완
    • 한국해양공학회지
    • /
    • 제22권1호
    • /
    • pp.22-29
    • /
    • 2008
  • A numerical investigation is made on the effects of the location and shape of the front wall of an OWC(Oscillating Water Column) chamber on the hydroelastic response of a VLFS. Most of the studies on the effects of an OWC chamber on the response of a VLFS have assumed the location of the OWC chamber to be at the front of the VLFS. In the present study, an OWC-chamber is introduced at an arbitrary position in relation to a VLFS to determine the influence of the location and shape of the OWC chamber on the hydroelastic response of the VLFS. A finite element method is adopted as a numerical scheme for the fluid domain. or the finite element method, combined with a mode superposition method, is applied in order to consider the change of mass and stiffness The OWC chamber in a piecewise constant manner. or the facilitated anefficient analysis of The hydroelastic response of the VLFS, as well as the easy modeling of different shape and material properties for the structure. Reduction of hydroelastic response of the VLFS is investigated for various locations and front wall shapes of the owe chamber.

Energy extraction from the motion of an oscillating water column

  • Wang, Hao;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.327-348
    • /
    • 2013
  • An Oscillating Water Column (OWC) is a relatively practical and convenient device that converts wave energy to a usable form, which is electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure with one open end submerged in the water and with an air turbine at the top. This research adopts potential theory and Galerkin methods to solve the fluid motion inside the OWC. Using an air-water interaction model, OWC design for energy extraction from regular wave is also explored. The hydrodynamic coefficients of the scattering and radiation potentials are solved for using the Galerkin approximation. The numerical results for the free surface elevation have been verified by a series of experiments conducted in the University of New Orleans towing tank. The effect of varying geometric parameters on the response amplitude operator (RAO) of the OWC is studied and modification of the equation for evaluating the natural frequency of the OWC is made. Using the model of air-water interaction under certain wave parameters and OWC geometric parameters, a computer program is developed to calculate the energy output from the system.

착저식 OWC 파력발전장치의 파에너지 흡수효율 및 파랑하중 계산 (Prediction of Wave Energy Absorption Efficiency and Wave Loads of a Three-Dimensional Bottom-Mounted OWC Wave Power Device)

  • 홍도천;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제13권1호
    • /
    • pp.47-52
    • /
    • 2010
  • 근해에 설치되는 3차원 착저식 OWC 파력발전 챔버 구조물의 파 에너지 흡수효율과 구조물에 작용하는 1차 및 시간 평균 2차 파랑하중의 해석기법을 보였다. 쌍동형 OWC챔버 내부의 변동압력을 각 챔버의 내부 자유표면 경계조건에 도입하였으며 챔버 내부는 Rankine, 외부는 유한수심 3차원 자유표면 Green함수에 연계된 하이브리드 적분방정식을 사용하여 포텐셜 유동을 해석하였다. 수치실험 결과로서 3차원 착저식 OWC 파일럿 플랜트의 파력발전 1차변환 효율과 구조물에 작용하는 반복 및 지속적인 파랑하중을 제시하였다.

부유식 OWC 챔버의 파랑중 거동특성 연구 (Study on Performance of a Floating-Type OWC Chamber in Regular Waves)

  • 홍도천;현범수;홍시영
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.43-51
    • /
    • 1992
  • The hydrodynamic performance of a floating-type OWC (Oscillating Water Column) chamber is studied numerically and experimentally in this study. The numerical approach based on two-dimensional linear theory of floating wave absorber was attempted to design an efficient wave energy absorber, while model test was performed in a wave basin to test a performance of designed model and validate the reliability of developed numerical code. The focus of study is placed mainly on the experimental study to evaluate the principal characteristics of the designed OWC chamber in regular waves. The effects of the variation of wave height on OWC device and of air pressure inside chamber are also presented. Finally, the measured results were compared with computed ones, and it was shown that the designed chamber works with high efficiency $(\eta_H>1$ over most of wave lengths covered by present study. It is therefore concluded that the developed code is capable of being successfully employed to design OWC chambers at various ocean environments, even though there exist some minor discrepancies between measured and computed results.

  • PDF

연안고정식 파력발전 겸 OWC 방파제 성능연구 (Study of Nearshore OWC Wave Power Absorbing Breakwater)

  • 홍도천;신승호;홍기용;홍석원
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.465-468
    • /
    • 2006
  • The wave power absorbing performance of a bottom-mounted oscillating water column (OWC) chamber structure is studied. The potential problem inside the chamber is solved by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function taking account of fluctuating air pressure in the air chamber. The absorbed wave power, wave elevation inside the chamber, reflection coefficient and wave loads are calculated for various values of a parameter related to the fluctuating air pressure. The present methods can also be used for the design of a OWC breakwater which can absorb and reflect the incoming wave energy at the same time.

  • PDF

고정식 파력발전용 OWC챔버의 성능파악을 위한 실험적 연구 (An Experimental Study on Performance of the Fixed-type OWC Chamber for Wave-Energy Conversion)

  • 현범수;이판묵;공도식
    • 대한조선학회논문집
    • /
    • 제28권2호
    • /
    • pp.318-328
    • /
    • 1991
  • 본고는 진동수주(Oscillating Water Column:OWC)와 에어터어빈으로 구성된 고정식 파력발전장치의 특성파악을 위한 실험적 연구를 다루고 있다. 실험의 단순화를 위하여 에어터어빈은 이에 등가한 압력강하를 주는 와이어메쉬 스크린으로 대치하여 챔버내 공기유동 및 파랑운동간의 상호작용을 시뮬레이션하였다. 실험은 예인수조에 설치된 조파기를 이용하여 주파수 범위 0.22-0.75Hz인 규칙파 중에서 실시되었다. 실험결과는 홍도천 등 [4]의 2차원 포텐시얼 수치해석결과와 비교되었으며, 상호 잘 일치된 결과를 줌을 확인할수 있었다. 와이어메쉬 스크린을 사용한 공기터어빈의 시뮬레이션 결과로부터 OWC챔버에 미치는 스크린의 영향은 본 연구에서 설정한 실험범위 내에서는 무시할 만한 것으로 나타났다. 정성적으로 볼때 본 형상을 갖는 약 6m정도의 시제품을 제작한다면 주파수 0.3Hz 이내의 해양파중에서 실제 사용이 가능할 것으로 여겨진다.

  • PDF

사파중 진동수주형 파력발전장치의 성능평가 (Performance of Oscillating Water Column type Wave Energy Converter in Oblique Waves)

  • 김길원;현범수;홍기용;류진
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권3호
    • /
    • pp.182-188
    • /
    • 2014
  • 진동수주형 파력발전시스템의 성능은 OWC챔버의 형상 뿐만 아니라 입사파의 각도와 터빈의 효과로 인한 압력강하등과 같은 작동환경의 영향도 받는다. 기존의 대부분 연구들은 파랑에너지 흡수효율에 초점을 맞췄기 때문에 입사파 방향이 OWC챔버 입구면과 직각을 이룬다는 가정 하에 수행되었다. 하지만 실해역에서는 입사파가 해양환경에 따라 사파의 형태로 입사하게 될 것이고, 고정식 구조물인 경우에는 그 영향이 더욱 지배적이다. 본 논문은 실험 및 수치해석적인 방법으로 사파중 OWC챔버의 성능에 대하여 고찰하였다. 실험은 3차원 조파수조를 이용하여 다양한 입사파 각도조건에서 수행하였다. 터빈의 영향을 고려하기 위하여 오리피스를 적용하여 챔버내 진동수주의 수위 변동을 계측하였다. VOF모델을 기반으로 한 수치조파수조를 구축하여 실험과 동일한 조건으로 계산을 수행하여 실험결과와 비교분석하여 공기실과 그 인근의 유동변화를 고찰하였다.