Browse > Article
http://dx.doi.org/10.26748/KSOE.2022.009

Oscillating Water Column (OWC) Wave Energy Converter Part 1: Fixed OWC  

Yang, Hyunjai (Department of Naval Architecture and Ocean Engineering, Inha University)
Jung, Hyen-Cheol (Department of Naval Architecture and Ocean Engineering, Inha University)
Koo, WeonCheol (Department of Naval Architecture and Ocean Engineering, Inha University)
Publication Information
Journal of Ocean Engineering and Technology / v.36, no.4, 2022 , pp. 280-294 More about this Journal
Abstract
This study reviews the recent development and research results of a fixed oscillating water column (OWC) wave energy converter (WEC). The OWC WEC can be divided into fixed and floating types based on the installation location and movement of the structure. In this article, the study on a stationary OWC WEC, which is close to commercialization through the accumulation of long-term research achievements, is divided into five research categories with a focus on primary energy conversion research. These research categories include potential-flow-based numerical analysis, wave tank experiments, computational fluid dynamics analyses toward investigation of fluid viscous effects, U-shaped OWC studies that can amplify water surface displacement in the OWC chamber, and studies on OWC prototypes that have been installed and operated in real sea environments. This review will provide an overview of recent research on the stationary OWC WEC and basic information for further detailed studies on the OWC.
Keywords
Oscillating water column; Wave energy converter; Potential flow; Computational fluid dynamics; Wave tank experiment; U-OWC;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Choi, J.S., Lee, J., Lim, C.H., Ko, T.K., Park, J.Y., Kim, K., ... Cho, I.H. (2018). Status for Development of the Open Sea Test Site for Wave Energy Converters in Korea. Retrieved April 2022 from https://tethys-engineering.pnnl.gov/sites/default/files/publications/AWTEC2018-446.pdf
2 Koirala, P., Nagata, S., Imai, Y., Murakami, T., & Setoguchi, T. (2015). Numerical Analysis of Primary Conversion Efficiency of Oscillating Water Columns with Multiple Chambers, Procedia Engineering, 105, 568-600. https://doi.org/10.1016/j.proeng.2015.05.036   DOI
3 Koo, W., & Kim, M.H. (2010). Nonlinear Time-Domain Simulation of a Land-Based Oscillating Water Column. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(5), 276-285. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000051   DOI
4 Koo, W., Kwon, J.S., Kim, J.D., Kim, S.J., Kim, M.W., & Choi, M.K. (2012). Experimental Study of Shape Parameter of Land-Based OWC Wave Energy Converter. Journal of Ocean Engineering and Technology, 26(3), 33-38. https://doi.org/10.5574/KSOE.2012.26.3.033   DOI
5 Lim, C.H., Shin, S., Park, S., Kim, K.H., Oh, J.H., Kim, G.Y., & Nam, J.S. (2021). A Study on the Estimation of the Wave Load on the Structure of wave Energy Converter connected to Rubble-Mound Breakwater. Journal of the Korean Society for Marine Environment & Energy, 24(4), 179-190. https://doi.org/10.7846/JKOSMEE.2021.24.4.179   DOI
6 Liu, C., Huang, Z., Keung, A.L.W., & Geng, N. (2010). A Numerical Study of Wave Energy Converter in the Form of an Oscillating Water Column Based on a Mixed Eulerian-Lagrangian Formulation. Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 589-596. https://doi.org/10.1115/OMAE2010-21056   DOI
7 Liu, Z., Hyun, B.S., Hong, K.Y., & Lee, Y. (2009a). Investigation on Integrated System of Chamber and Turbine for OWC Wave Energy Convertor. Proceedings of 19th International Offshore and Polar Engineering Conference, Osaka, Japan, ISOPE-I-09-050.
8 Liu, Z., Shi, H., & Hyun, B. (2009b). Practical Design and Investigation of the Breakwater OWC Facility in China. Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden. 304-308.
9 Lopez, I., Castro, A., & Iglesias, G. (2015). Hydrodynamic Performance of an Oscillating Water Column Wave Energy Converter by Means of Particle Imaging Velocimetry. Energy, 83, 89-103. https://doi.org/10.1016/j.energy.2015.01.119   DOI
10 Lim, C.H., Shin, S., Park, S., Kim, K.H., Oh, J.H., Kim, G.Y., & Nam, J.S. (2021). A study on the Estimation of the Wave Load on the Structure of wave Energy Converter connected to Rubble-Mound Breakwater. Journal of the Korean Society for Marine Environment & Energy, 24(4), 179-190. https://doi.org/10.7846/JKOSMEE.2021.24.4.179   DOI
11 Gouaud, F., Rey, V., Piazzola, J., & Van Hooff, R. (2010). Experimental Study of the Hydrodynamic Performance of an Onshore Wave Power Device in the Presence of an Underwater Mound. Coastal Engineering, 57(11-12), 996-1005. https://doi.org/10.1016/j.coastaleng.2010.06.003   DOI
12 Heath, T., Whittaker, T.J.T., & Boake, C.B. (2000). The Design, Construction and Operation of the LIMPET Wave Energy Converter (Islay, Scotland). Proceedings of the 4th European Wave Energy Conference, Aalborg Denmark, 49-55.
13 Higuera, P., Lara, J.L., & Losada, I.J. (2013). Realistic Wave Generation and Active Wave Absorption for Navier-Stokes Models: Application to OpenFOAM®. Coastal Engineering, 71, 102-118. https://doi.org/10.1016/j.coastaleng.2012.07.002   DOI
14 Kamath, A., Bihs, H., & Arntsen O, A. (2015). Numerical Modeling of Power Take-off Damping in an Oscillating Water Column Device. International Journal of Marine Energy, 10, 1-16. https://doi.org/10.1016/j.ijome.2015.01.001   DOI
15 Ikoma, T., Masuda, K., Eto, H., & Shibuya, S. (2019). Basic Characteristics of the Primary Conversion of an Oscillating Water Column Type Wave Energy Converter Installed on a Wave-Dissipating Double Caisson. Journal of Offshore Mechnics and Arctic Engineering, 141(6), 061902. https://doi.org/10.1115/1.4042943   DOI
16 Iturrioz, A., Guanche, R., Lara, J.L., Vidal, C., & Losada, I.J. (2015). Validation of OpenFOAM® for Oscillating Water Column Three-dimensional Modeling. Ocean Engineering, 107, 222-236. https://doi.org/10.1016/j.oceaneng.2015.07.051   DOI
17 Josset, C., & Clement, A.H. (2007). A Time-Domain Numerical Simulator for Oscillating Water Column Wave Power Plants. Renewable Energy, 32, 1379-1402. https://doi.org/10.1016/j.renene.2006.04.016   DOI
18 Kihara, K., Hosokawa, Y., Masuda, K., & Ikoma, T. (2019). A Practical Estimation Method of PTO and a Sea Test of a PW-OWC Type Wec Using a Wave Dissipating Double Caisson. Advances in Renewable Energies Offshore, London, 531-538.
19 Kim, D.M., Min, E.H., & Koo, W. (2021a). Numerical Study on the Optimal Shape and Performance of an Oscillating Water Column Using Analytic Air Damping Coefficients and Numerical Wave Tank. Journal of The Korean Society for Marine Environment & Energy, 24(1), 1-8. https://doi.org/110.7846/JKOSMEE.2021.24.1.1   DOI
20 Kim, J.-S. Nam, B.W. Kim, K.-H. Park, S., Shin, S.H., & Hong, K. (2020). A Numerical Study on Hydrodynamic Performance of an Inclined OWC Wave Energy Converter with Nonlinear Turbine-Chamber Interaction Based on 3D Potential Flow. Journal of Marine Science and Engineering, 8, 176. https://doi.org/10.3390/jmse8030176   DOI
21 Kim, J.-S., Kim, K.-H., Park, J., Park, S., & Shin, S.H. (2021b). A Numerical Study on Hydrodynamic Energy Conversions of OWC-WEC with the Linear Decomposition Method under Irregular Waves. Energies, 14(6), 1522. https://doi.org/10.3390/en14061522   DOI
22 Lopez, I., Pereiras, B., Castro, F., & Iglesias, G. (2014). Optimization of Turbine-Induced Damping for an OWC Wave Energy Converter Using a RANS-VOF Numerical Model. Applied Energy, 127, 105-114. https://doi.org/10.1016/j.apenergy.2014.04.020   DOI
23 Lopez, I., Pereiras, B., Castro, F., & Iglesias, G. (2016). Holistic Performance Analysis and Turbine-Induced Damping for an OWC Wave Energy Converter. Renewable Energy, 85, 1155-1163. https://doi.org/10.1016/j.renene.2015.07.075   DOI
24 Luo, Y., Nader, J.R., Cooper, P., & Zhu, S.P. (2014). Nonlinear 2D Analysis of the Efficiency of Fixed Oscillating Water Column Wave Energy Converters. Renewable Energy, 64, 255-265. https://doi.org/10.1016/j.renene.2013.11.007   DOI
25 Mahnamfar, F., & Altunkaynak, A. (2017). Comparison of Numerical and Experimental Analyses for Optimizing the Geometry of OWC Systems. Ocean Engineering, 130, 10-24. https://doi.org/10.1016/j.oceaneng.2016.11.054   DOI
26 Malara, G., & Arena, F. (2013). Analytical Modelling of an U-Oscillating Water Column and Performance in Random Waves. Renewable Energy, 60, 116-126. https://doi.org/10.1016/j.renene.2013.04.016   DOI
27 Arena, F., Malara, G., Romolo, A., & Ascanelli, A. (2013b). On Design and Building of a U-OWC Wave Energy Converter in the Mediterranean Sea: A Case Study. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, V008T09A102. https://doi.org/10.1115/OMAE2013-11593   DOI
28 Malara, G., Romolo, A., Fiamma, V., & Arena, F. (2017). On the Modelling of Water Column Oscillations in U-OWC Energy Harvesters. Renewable Energy, 101, 964-972. https://doi.org/10.1016/j.renene.2016.09.051   DOI
29 Marjani, A.E., Ruiz, R.C., Rodriguez, M.A., & Santos, M.T.P. (2008). Numerical Modelling in Wave Energy Conversion Systems. Energy, 33, 1246-1253. https://doi.org/10.1016/j.energy.2008.02.018   DOI
30 Masuda, Y., & Miyazaki, T. (1978). Wave Power Electric Generation Study in Japan. Proceedings of International Symposium on Wave and Tidal Energy, Canterbury, England, B6-85-B6-92.
31 Ashlin, S.J., Sannasiraj, S.A, Sundar, V., Malara, G., Arena, F., & Romolo, A. (2019). Numerical Validation of Hydrodynamic Characteristics of Open-sea U-type Oscillating Water Column Wave Energy Converter. Advances in Renewable Energies Offshore - Proceedings of the 3rd International Conference on Renewable Energies Offshore, London, 569-577.
32 Viviano, A., Naty, S., & Foti, E., (2018). Scale Effects in Physical Modelling of a Generalized OWC. Ocean Engineering, 162, 248-258. https://doi.org/10.1016/j.oceaneng.2018.05.019   DOI
33 Belibassakis, K., Magkouris, A., & Rusu, E. (2020). A BEM for the Hydrodynamic Analysis of Oscillating Water Column Systems in Variable Bathymetry. Energies, 13(13), 3403. https://doi.org/10.3390/en13133403   DOI
34 Boccotti, P. (2003). On a New Wave Energy Absorber. Ocean Engineering, 30, 1191-1200. https://doi.org/10.1016/S0029-8018(02)00102-6   DOI
35 Allsop, W., Bruce, T., Alderson, J., Ferrante, V., Russo, V., Vicinanza, D., & Kudella, M. (2014). Large Scale Tests on a Generalised Oscillating Water Column Wave Energy Converter. Proceedings of the Hydralab IV Joint User Meeting, Lisbon.
36 Arena, F., Fiamma, V., Laface, V., Malara, G., Romolo, A., Viviano, A., ... Carillo, A. (2013a). Installing U-OWC Devices Along the Italian Coasts. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, V008T09A061. https://doi.org/10.1115/OMAE2013-10928   DOI
37 Tsai, C.P., Ko, D.H., & Chen, Y.C. (2018). Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter. Sustainability, 10(3), 643. https://doi.org/10.3390/su10030643   DOI
38 Wang, R.Q., Ning, D.Z., Zhang, C.W., Zou, Q.P., & Liu, Z. (2018). Nonlinear and Viscous Effects on the Hydrodynamic Performance of a Fixed OWC Wave Energy Converter. Coastal Engineering, 131, 42-50. https://doi.org/10.1016/j.coastaleng.2017.10.012   DOI
39 Vyzikas, T., Deshoulieres, S., Barton, M., Giroux, O., Greaves, D., & Simmonds, D. (2017a). Experimental Investigation of Different Geometries of Fixed Oscillating Water Column Devices for Wave Energy Generation. Renewable Energy, 104. 248-258. https://doi.org/10.1016/j.renene.2016.11.061   DOI
40 Wang, D.J., Katory, M., & Li, Y.S. (2002). Analytical and Experimental Investigation on the Hydrodynamic Performance of Onshore Wave-power Devices. Ocean Engineering, 29(8), 871-885. https://doi.org/10.1016/S0029-8018(01)00058-0   DOI
41 Yang, H.J., Min, E.H., & Koo, W. (2021). Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC. Journal of Ocean Engineering and Technology, 35(4), 296-304. https://doi.org/10.26748/KSOE.2021.020   DOI
42 Zhang, D., Li, W., & Lin, Y. (2009). Wave Energy in China: Current Status and Perspectives. Renewable Energy, 34(10), 2089-2092. https://doi.org/10.1016/j.renene.2009.03.014   DOI
43 Zhang, Y., Zou, Q.P., & Greaves, D. (2012). Air-Water Two-Phase Flow Modeling of Hydrodynamic Performance of an Oscillating Water Column Device. Renewable Energy, 41, 159-170. https://doi.org/10.1016/j.renene.2011.10.011   DOI
44 Vyzikas, T., Deshoulieres, S., Giroux, O., Barton, M., & Greaves, D. (2017b). Numerical study of Fixed Oscillating Water Column with RANS-type Two-phase CFD Model. Renewable Energy, 102, 294-305. https://doi.org/10.1016/j.renene.2016.10.044   DOI
45 Falnes, J. (1993). Research and Development in Ocean-Wave Energy in Norway. In Proceedings of the International Symposium on Ocean Energy Development, Hokkaido, Japan, 27-39.
46 Teixeira, P.R.F., Davyt, D.P, Didier, E., & Ramalhais, R. (2013). Numerical Simulation of an Oscillating Water Column Device Using a Code Based on Navier-Stokes Equations. Energy, 61(2013), 513-530. https://doi.org/10.1016/j.energy.2013.08.062   DOI
47 Torre-Enciso, Y., Ortubia, I., Lopez de Aguileta, L.I., & Marques, J. (2009). Mutriku Wave Power Plant: from the Thinking out to the Reality. Proceedings of 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 319-329.
48 Evans, D.V. (1978). The Oscillating Water Column Wave-energy Device. IMA Journal of Applied Mathematics, 22, 4, 423-433. https://doi.org/10.1093/imamat/22.4.423   DOI
49 Falcao, A.F.O, & Henriques, J.C.C. (2016). Oscillating-water-column Wave Energy Converters and Air Turbines: A Review. Renewable Energy, 85, 1391-1424. https://doi.org/10.1016/j.renene.2015.07.086   DOI
50 Falcao, A.F.O. (2000). The Shoreline OWC Wave Power Plant at the Azores. Proceedings of the 4th European Wave Energy Conference, Aalborg Denmark, 42-47.
51 Gaspar, L.A., Teixeira, P.R.F., & Didier, E. (2020). Numerical Analysis of the Performance of Two Onshore Oscillating Water Column Wave Energy Converters at Different Chamber Wall Slopes. Ocean Engineering, 201, 107119. https://doi.org/10.1016/j.oceaneng.2020.107119   DOI
52 Elhanafi, A., Gregor, M., Fleming, A., & Leong, Z. (2017). Scaling and Air Compressibility Effects on a Three-dimensional Offshore Stationary OWC Wave Energy Converter. Applied Energy, 189, 1-20. https://doi.org/10.1016/j.apenergy.2016.11.095   DOI
53 Bouali, B., & Larbi, S. (2017). Sequential Optimization and Performance Prediction of an Oscillating Water Column Wave Energy Converter. Ocean Engineering, 131, 162-173. https://doi.org/10.1016/j.oceaneng.2017.01.004   DOI
54 Boccotti, P. (2007a). Comparison Between a U-OWC and a Conventional OWC. Ocean Engineering, 34(5-6), 799-805. https://doi.org/10.1016/j.oceaneng.2006.04.005   DOI
55 Boccotti, P. (2007b). Caisson Breakwaters Embodying an OWC with a Small Opening-Part I: Theory. Ocean Engineering, 34(5-6), 806-819. https://doi.org/10.1016/j.oceaneng.2006.04.006   DOI
56 Boccotti, P., Filianoti, P., Fiamma, V., & Arena, F. (2007). Caisson Breakwaters Embodying an OWC with a Small Opening-Part II: A Small-scale Field Experiment. Ocean Engineering, 34, 820-841. https://doi.org/10.1016/j.oceaneng.2006.04.016   DOI
57 Dai, S., Day, S., Yuan, Z., & Wang, H., 2019. Investigation on the Hydrodynamic Scaling Effect of an OWC Type Wave Energy Device Using Experiment and CFD Simulation. Renewable Energy, 142(2019), 184-194. https://doi.org/10.1016/j.renene.2019.04.066   DOI
58 Delaure, Y.M.C., & Lewis, A. (2003). 3D hydrodynamic Modelling of Fixed Oscillating Water Column Wave Power Plant by a Boundary Element Methods. Ocean Engineering, 30, 309-330. https://doi.org/10.1016/S0029-8018(02)00032-X   DOI
59 Dizadji, N., & Sajadian, S.E. (2011). Modeling and Optimization of the Chamber of OWC System. Energy, 36(5), 2260-2366. https://doi.org/10.1016/j.energy.2011.01.010   DOI
60 Elhanafi, A., Fleming, A., Macfarlane, G., & Leong, Z. (2016). Numerical Energy Balance Analysis for an Onshore Oscillating Water Column-wave Energy Converter. Energy, 116, 539-557. https://doi.org/10.1016/j.energy.2016.09.118   DOI
61 Park, S., Nam, B.W., Kim, K.H., & Hong, K. (2018b). Parametric Study on Oscillating Water Column Wave Energy Converter Applicable to Breakwater. Journal of Advanced Research in Ocean Engineering, 4(2), 66-77. http://dx.doi.org/10.5574/JAROE.2018.4.2.066   DOI
62 Ning, D.Z., Guo, B.M., Wang, R.Q., Vyzikas, T., & Greaves, D. (2020). Geometrical Investigation of a U-Shaped Oscillating Water Column Wave Energy Device. Applied Ocean Research, 97, 102-105. https://doi.org/10.1016/j.apor.2020.102105   DOI
63 Mohapatra, P., & Sahoo, T. (2020). Hydrodynamic Performance Analysis of a Shore Fixed Oscillating Water Column Wave Energy Converter in the Presence of Bottom Variations. Journal of Engineering for the Maritime Environment, 234(1), 37-47. https://doi.org/10.1177/1475090219864833   DOI
64 Ning, D.Z., Wang, R.Q., Zou, Q.P., & Teng, B. (2016). An Experimental Investigation of Hydrodynamics of a Fixed OWC Wave Energy Converter. Applied Energy, 168, 636-648. https://doi.org/10.1016/j.apenergy.2016.01.107   DOI
65 Park, J. Y., Baek, H., Shim, H., & Choi, J. S. (2020). Preliminary Investigation for Feasibility of Wave Energy Converters and the Surrounding Sea as Test-Site for Marine Equipment.Journal of Ocean Engineering and Technology,34(5), 351-360. https://doi.org/10.26748/KSOE.2020.011   DOI
66 Park, S., Kim, K.H., Nam, B. W., Kim, J. S., & Hong, K. (2018a). A Study on the Performance Evaluation of the OWC WEC Applicable to Breakwaters using CFD. The Korean Society for Marine Environment & Energy, 21(4), 317-327.   DOI
67 Rajan, S.N., Karmakar, D., & Guedes Soares, C. (2019). Influence of Damping on an Oscillating Water Column WEC Integrated with a Breakwater. Advances in Renewable Energies Offshore -Proceedings of the 3rd International Conference on Renewable Energies Offshore, London, 579-587.
68 Rezanejad, K., & Guedes Soares, C. (2018). Enhancing the Primary Efficiency of an Oscillating Water Column Wave Energy Converter Based on a Dual-mass System Analogy. Renewable Energy, 123, 730-747. https://doi.org/10.1016/j.renene.2018.02.084   DOI
69 Rezanejad, K., Bhattacharjee, J., & Guedes Soares, C. (2015). Analytical and Numerical Study of Dual-Chamber Oscillating Water Columns on Stepped Bottom. Renewable Energy, 75, 272-282. https://doi.org/10.1016/j.renene.2014.09.050   DOI
70 Ning, D.Z., shi, J., Zou, Q.P., & Teng, B. (2015). Investigation of Hydrodynamic Performance of an OWC (Oscillating Water Column) Wave Energy Device Using a Fully Nonlinear HOBEM (Higher-Order Boundary Element Method). Energy, 83, 177-188. https://doi.org/10.1016/j.energy.2015.02.012   DOI
71 Rezanejad, K., Gadelho, J.F.M., & Soares, C.G. (2019). Hydrodynamic Analysis of an Oscillating Water Column Wave Energy Converter in the Stepped Bottom Condition Using CFD. Renewable Energy, 135, 1241-1259. https://doi.org/10.1016/j.renene.2018.09.034   DOI
72 Rezanejad, K., Guedes Soares, C., Lopez, I., & Carballo, R. (2017). Experimental and Numerical Investigation of the Hydrodynamic Performance of an Oscillating Water Column Wave Energy Converter. Renewable Energy, 106, 1-16. https://doi.org/10.1016/j.renene.2017.01.003   DOI
73 Rezanejad, K., Bhattacharjee, J., & Guedes Soares, C. (2013). Stepped Sea Bottom Effects on the Efficiency of Nearshore Oscillating Water Column Device. Ocean Engineering, 701, 25-38. https://doi.org/10.1016/j.oceaneng.2013.05.029   DOI
74 Shalby, M., Elhanafi, A., Walker, P., & Dorrell, D.G. (2019). CFD Modelling of a Small-Scale Fixed Multi-chamber OWC Device. Applied Ocean Research, 88, 37-47. https://doi.org/10.1016/j.apor.2019.04.003   DOI
75 Strati, F.M., Malara, G., & Arena, F. (2016). Performance Optimization of a U-Oscillating-Water-Column Wave Energy Harvester. Renewable Energy, 99, 1019-1028. https://doi.org/10.1016/j.renene.2016.07.080   DOI