• Title/Summary/Keyword: OSLD

Search Result 51, Processing Time 0.025 seconds

Evaluation of OSLD and EBT3 film for dose, energy, and angular dependence (OSLD와 EBT3 필름의 선량, 에너지, 방향의존성에 대한 평가)

  • Lee, Ju-seong;Kang, Bo-ram;Kwon, Hyeon-Kyung;Park, Ji-Young;Kim, Ju-Hye;Choi, Young-Se;Kim, Daehong
    • The Korean Journal of Food & Health Convergence
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • A radiation dosimeter is important to assess quality assurance (QA) of radiation therapy devices and to estimate the radiation dose in vivo dosimetry. Recently, optically stimulated luminescence detector (OSLD) is widely used in clinical filed. Therefore, the purpose of this study is to evaluate dose, energy, and angular dependence of OSLD and EBT3 film. The absorbed dose in clinical linear accelerator (Linac) beam is calibrated for dose per monitor unit (MU). Dose, energy, and angular dependence of OSLD and EBT3 film are estimated after the calibration procedure. The absorbed dose is measured at 50, 100, 150, and 200 cGy in an 6 MV X-ray beam for dose dependence. A dose of 150 cGy is delivered to OSLD and EBT3 film with 6 and 10 MV photon energies for energy dependence. For measurements of angular dependence, angular positions of gantry are $0^{\circ}{\pm}80^{\circ}$ with 6 MV at 150 cGy. The results of dose dependence is linear for OSLD and EBT3 film. For the results of energy dependence, errors were 0.39% and 0.03% for OSLD and EBT3 film, respectively. The results of dose for angular is decreased from $0^{\circ}$ to ${\pm}80^{\circ}$ for both OSLD and EBT3 film. When angle of $0^{\circ}$ is normalized to 1, and the dose is decreased to 60 and 66% at $80^{\circ}$ for OSLD and EBT3 film, respectively. Dose and energy dependence of OSLD and EBT3 film are measured within the recommendation of manufacturer. Angular dependence is increased from $0^{\circ}$ to ${\pm}80^{\circ}$ for OSLD and EBT3 film. The characteristics of OSLD and EBT3 film are similar and expected to useful for clinical field.

Comparison on the Dosimetry of TLD and OSLD Used in Nuclear Medicine (광자극발광선량계와 열형광선량계를 이용한 핵의학과 선량 측정비교)

  • Lee, Wang-Hui;Kim, Sung-Chul;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.329-334
    • /
    • 2012
  • For the dosimetry of the radiation workers, film badge, Thermo Luminescent Dosimeter (TLD), and glass dosimeter are being used and recently, there is a growing trend of using Optically Stimulated Luminescence Dosimeter (OSLD) in the world. However, OSLD is only being applied some of the field in Korea and there has been almost no study made related to OSLD. Thus, the accumulated radiation dose of TLD and OSLD that have been most frequently used in the field was compared in the radiation workers of nuclear medicine and their working areasfor 3 months. As a result, the average surface dose showed 0.85 mSv difference with 1.27 mSv for TLD and 2.12 mSv for OSLD while having 0.73 mSv difference for the average depth dose with 1.33 mSv for TLD and 2.06 mSv for OSLD. The surface dose and depth dose of OSLD showed statistically significant result with higher measurement (p<0.05).

Comparison on the Dosimetry of OSLD and PLD Used in Nuclear Medicine (형광유리 선량계와 광자극 발광선량계를 이용한 핵의학과 선량 측정비교)

  • Park, Jeong-kyu;Son, Sang-Joon;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.47-51
    • /
    • 2019
  • This study was conducted from July 1 to September 30, 2018 using Optically Stimulated Luminescence Dosimeter(OSLD) and photoluminescent glass dosimeter(PLD) to measure the 3-month exposure dose and the cumulative dose in the active working area of the nuclear medicine worker Respectively. As a result, the cumulative dose for three months in the worker and work area was measured as 1.97 mSv and 2.02 mSv in the PLD. The mean surface dose and the mean depth dose of the OSLD were measured to be 2.04 mSv. The difference in the total surface dose measured by the PLD and the OSLD was 0.66mSv and the total mean surface dose was 0.07mSv. The difference between the total depth dose and the total depth dose was 0.1mSv and 0.02mSv, respectively. It was found that the dose value of the OSLD was higher than that of the PLD. In addition, it was found that the maximum difference of 0.01mSv was observed between the PLD and the OSLD of the worker. For the dose measurement of the two dosimetry systems, there was no significant difference between the PLD and the OSLD in the surface dose of 0.239 (p>0.05). Also, the significance of PLD and OSLD in the deep dose was 0.109, which was not statistically significant (p>0.05).

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF

Relative ratio about dose value of thermoluminescence and optical stimulated luminescence dosimeter according to exposed condition in diagnostic radiation (진단방사선의 노출 조건에 따른 열형광선량계와 광자극형광 선량계의 선량값 상대비)

  • Kang, Yeonghan;Kwon, Soonmu;Kim, BooSoon
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • The purpose of this study was to find out the difference of radiation dose value through energy, exposure number, fluoroscopy time, the number of days of exposed scatter X-ray when TLD and OSLD is used in diagnostic radiology. The difference of value were measured by relative ratio and interval. Energy makes high relative ratio of TLD($1.81{\pm}0.41$) than OSLD($1.40{\pm}0.26$), exposure number makes high of OSLD($1.40{\pm}0.26$) than TLD($2.10{\pm}0.10$). There are no significant differences between relative ratio of TLD and OSLD in fluoroscopy time and the number of days of exposed scatter X-ray. But interval of relative ratio in the number of days of exposed scatter X-ray was narrowed in less 0.2. That means, the measurement of scatter X-ray could more confident in TLD and OSLD than the measurement of direct ray. In conclusion, we have to recognize the relative ratio of TLD and OSLD could be vary depending on exposed condition of radiation. And in some cases, double test of TLD and OSLD get more creditable results of dose value.

Evaluation of Usability and Radiation Dose Measurement Using Personal Radiation Exposure Dosimeter (방사선 개인피폭선량계를 이용한 피폭선량 측정 및 유용성 평가)

  • Kang, In-Seog;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.864-870
    • /
    • 2014
  • To propose a basis for the selection of personal dosimeters to measure radiation dose administration of radiation workers as a way to evaluate the usefulness dosimeter. For the dosimetry of the radiation workers 2012, during 1 year, 30 were radiation workers to measure personal dose. By personal exposure is measured cumulative dose, is investigated the performance of the TLD, PLD, OSLD. And comparing the measured value of each dosimeter dose and analyzed. Medical institutions, inspection work and quarterly confirmed the cumulative exposure dose of radiation workers. Using DAP and Ion-Chamber, to measure to compare TLD, PLD, OSLD dosimeter performance. A comparison of the directly through the X-ray dosimeter and The absolute value of the Ion-Chamber, OSLD more similar than in the TLD and PLD showed the dose values so the excellent ability to measure the results. Also in radiation generating area dose of radiation workers is higher than that in OSLD. Consequently, in terms of the individual exposure management OSLD is appropriated and beneficial than others.

Effects of Fully Filling Deep Electron/Hole Traps in Optically Stimulated Luminescence Dosimeters in the Kilovoltage Energy Range

  • Chun, Minsoo;Jin, Hyeongmin;Lee, Sung Young;Kwon, Ohyun;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.134-142
    • /
    • 2022
  • Background: This study investigated the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps in the kV energy ranges. Materials and Methods: The experimental group consisted of InLight nanoDots, whose deep electron/hole traps were fully filled with 5 kGy pre-irradiation (OSLDexp), whereas the non-pre-irradiated OSLDs were arranged as a control group (OSLDcont). Absorbed doses for 75, 80, 85, 90, 95, 100, and 105 kVp with 200 mA and 40 ms were measured and defined as the unit doses for each energy value. A bleaching device equipped with a 520-nm long-pass filter was used, and the strong beam mode was used to read out signal counts. The characteristics were investigated in terms of fading, dose sensitivities according to the accumulated doses, and dose linearity. Results and Discussion: In OSLDexp, the average normalized counts (sensitivities) were 12.7%, 14.0%, 15.0%, 10.2%, 18.0%, 17.9%, and 17.3% higher compared with those in OSLDcont for 75, 80, 90, 95, 100, and 105 kVp, respectively. The dose accumulation and bleaching time did not significantly alter the sensitivity, regardless of the filling of deep traps for all radiation qualities. Both OSLDexp and OSLDcont exhibited good linearity, by showing coefficients determination (R2) > 0.99. The OSL sensitivities can be increased by filling of deep electron/hole traps in the energy ranges between 75 and 105 kVp, and they exhibited no significant variations according to the bleaching time.

The comparison of angular dependence for optical stimulated luminescence dosimeter(OSLD) and electronic personal dosimeter(EPD) used in Diagnostic Radiology (영상의학과에서 사용되는 광자극 형광선량계와 전자식 개인선량계의 방향 의존성 비교)

  • Kwon, Soon-mu;Park, Jeong-kyu;Kim, Boo-soon
    • Journal of Digital Contents Society
    • /
    • v.16 no.3
    • /
    • pp.463-470
    • /
    • 2015
  • The angular dependence of active dosimeters, EPD, is analysed and compared with that of passive dosimeters, OSLD, after evaluating their relative response and uncertainty of measurement, where it is known that the personal use of them has been increased recently. There appeared a minor variation for average relative response of OSLD in the horizontal and vertical directions within the range $0^{\circ}{\sim}{\pm}90^{\circ}$, which are 0.97 and 0.95 respectively. The variations of angular dependence in the same situations with OSLD are 0.65 and 0.62, respectively, which also reveals a negligible effect on the overall uncertainty. EPDs within the interval $0^{\circ}{\sim}{\pm}60^{\circ}$ for horizontal and vertical directions are 0.94 and 0.97, respectively. These satisfy the requirements of IEC 61526. Uncertainties about the dependence of direction from horizontal and vertical directions are 0.44, 0.40, respectively. The impact of these uncertainties on the overall uncertainty was negligible. However, we observed a significant change in reactivity: the relative reactivities for $+90^{\circ}$ and $-90^{\circ}$ from the horizontal direction are 0.60, 0.37, while that form vertical direction is 0.06. The direction dependence of OSLD was superior to EPD in the range of $0^{\circ}{\sim}{\pm}90^{\circ}$. There appeared a rapidly changing structural features in EPD response for a certain direction. Therefore, we conclude that concurrent use of passive dosimeters and auxiliary dosimeter provides accurate data for personal dose measurements.

Evaluation of safety by skin dosimetry in Intraoperative Radiotherapy for breast cancer patients (유방암 환자의 수술 중 방사선치료 시 피부선량 측정을 통한 안전성 평가)

  • Jung, In Ho;Kim, Joon Won;Park, Kwang Woo;Ha, Jin Sook;Jeon, Mi Jin;Cho, Yoon Jin;Kim, Sei Joon;Kim, Jong Dae;Shin, Dong Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • Purpose : We investigated the safety of Intrabeam$^{TM}$ system, X-ray unit for Intraoperative Radiotheray (IORT) by measuring surface dose using Optically Stimulated Luminescent Dosimeter(OSLD). Materials and Methods : 30 patients were selected, who were in breast cancer patients and had an operation of breast conserving surgery (BCS). At the inner surface of tumor bed, 20 Gy were described, and 5 Gy at 1cm depth from the inner surface. Along the size of tumor bed which could be decided after resection of tumor, the size of applicator were determined. Usual treatment time were from 18 to 40 minutes. For the measurement of surface doses, OSLD were placed at superior(U1,2), inferior(D1,2), lateral(L1,2) and medial(M1,2) directions from the center of applicator. Each direction, two OSLD were placed at 0.5 cm and 1.5 cm from the center. Mean, maximum, and minimum doses were analyzed to be compared. Results : Mean values were U1 $2.23{\pm}0.80Gy$, U2 $1.54{\pm}0.53Gy$, D1 $1.73{\pm}0.63Gy$, D2 $1.25{\pm}0.45Gy$, L1 $1.95{\pm}0.82Gy$, L2 $1.38{\pm}0.42Gy$, M1 $2.03{\pm}0.70Gy$, and M2 $1.51{\pm}0.58Gy$. Maximum values were 4.34 Gy at U1, and Minimum values were 0.45 Gy at M2. 13.3 % of patient (4pts out of 30) were reported that surface dose were over 4 Gy. Conclusion : The fact that skin dose of all patients were less than 5 Gy based on OSLD measurement showed the safety of Intrabeam$^{TM}$ system. In the relatively small breast volume, the tendency that surface dose was increased had been shown, which was analyzed by the data of patients who irradiated over 4Gy at skin surface. Therefore, for appropriate indication for IORT, it is suggested that breast volume as well as the size and position of tumor should be carfully considered.

  • PDF

Prediction of Midline Dose from Entrance and Exit Dose Using OSLD Measurements for Total Body Irradiation

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Background: This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). Materials and Methods: For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. Results and Discussion: The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. Conclusion: The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.