• Title/Summary/Keyword: ORL images

Search Result 24, Processing Time 0.035 seconds

Face Recognition using the Feature Space and the Image Vector (세그멘테이션에 의한 특징공간과 영상벡터를 이용한 얼굴인식)

  • 김선종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.821-826
    • /
    • 1999
  • This paper proposes a face recognition method using feature spaces and image vectors in the image plane. We obtain the 2-D feature space using the self-organizing map which has two inputs from the axis of the given image. The image vector consists of its weights and the average gray levels in the feature space. Also, we can reconstruct an normalized face by using the image vector having no connection with the size of the given face image. In the proposed method, each face is recognized with the best match of the feature spaces and the maximum match of the normally retrieval face images, respectively. For enhancing recognition rates, our method combines the two recognition methods by the feature spaces and the retrieval images. Simulations are conducted on the ORL(Olivetti Research laboratory) images of 40 persons, in which each person has 10 facial images, and the result shows 100% recognition and 14.5% rejection rates for the 20$\times$20 feature sizes and the 24$\times$28 retrieval image size.

  • PDF

Face Recognition Method using Geometric Feature and PCA/LDA in Wavelet Domain (웨이브릿 영역에서 기하학적 특징과 PCA/LDA를 사용한 얼굴 인식 방법)

  • 송영준;김영길
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.107-113
    • /
    • 2004
  • This paper improved the performance of the face recognition system using the PCA/LDA hybrid method based on the facial geometric feature and the Wavelet transform. Because the previous PCA/LDA methods have measured the similarity according to the formal dispersion, they could not reflect facial boundaries exactly In order to recover this defect, this paper proposed the method using the distance between eyes and mouth. If the difference of the measured distances on the query and the training images is over the given threshold, then the method reorders the candidate images according to energy feature vectors of eyes, a nose, and a chin. To evaluate the performance of the proposed method the computer simulations have been performed with four hundred facial images in the ORL database. The results showed that our method improves about 4% recognition rate over the previous PCA/LDA method.

  • PDF

Face Recognition Using a Phase Difference for Images (영상의 위상 차를 이용한 얼굴인식)

  • Kim, Seon-Jong;Koo, Tak-Mo;Sung, Hyo-Kyung;Choi, Heung-Moon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.81-87
    • /
    • 1998
  • This paper proposes an efficient face recognition system using phase difference between the face images. We use a Karhunen-Loeve transform for image compression and reconstruction, and obtain the phase difference by using normalized inner product of the two compressed images. The proposed system is rotation and light-invariant due to using the normalized phase difference, and somewhat shift-invariant due to applying the cosine function. The faster recognition than the conventional system and incremental training is possible in the proposed system. Simulations are conducted on the ORL images of 40 persons, in which each person has 10 facial images, and the result shows that the faster recognition than conventional recognizer using convolution network under the same recognition error rate of 8% does.

  • PDF

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.

Bilateral Diagonal 2DLDA Method for Human Face Recognition (얼굴 인식을 위한 쌍대각 2DLDA 방법)

  • Kim, Young-Gil;Song, Young-Jun;Kim, Dong-Woo;Ahn, Jae-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.648-654
    • /
    • 2009
  • In this paper, a method called bilateral diagonal 2DLDA is proposed for face recognition. Two methods called Dia2DPCA and Dia2DLDA were suggested to reserve the correlations between the variations in the rows and columns of diagonal images. However, these methods work in the row direction of these images. A row-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the column variation of alternative diagonal face images. In addition, column-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the row variation in diagonal images. A bilateral projection scheme was applied using left and right multiplying projection matrices. As a result, the dimension of the feature matrix and computation time can be reduced. Experiments carried out on an ORL face database show that the proposed method with three different distance measures, namely, Frobenius, Yang and AMD, is more accurate than some methods, such as 2DPCA, B2DPCA, 2DLDA, etc.

Eye Detection in Facial Images Using Zernike Moments with SVM

  • Kim, Hyoung-Joon;Kim, Whoi-Yul
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.335-337
    • /
    • 2008
  • An eye detection method for facial images using Zernike moments with a support vector machine (SVM) is proposed. Eye/non-eye patterns are represented in terms of the magnitude of Zernike moments and then classified by the SVM. Due to the rotation-invariant characteristics of the magnitude of Zernike moments, the method is robust against rotation, which is demonstrated using rotated images from the ORL database. Experiments with TV drama videos showed that the proposed method achieved a 94.6% detection rate, which is a higher performance level than that achievable by the method that uses gray values with an SVM.

  • PDF

Fast Gabor Feature Extraction for Real Time Face Recognition (실시간 얼굴인식을 위한 빠른 Gabor 특징 추출)

  • Cho, Kyoung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.597-600
    • /
    • 2007
  • Face is considered to be one of the biometrics in person identification. But Face recognition is a high dimensional pattern recognition problem. Even low-resolution face images generate huge dimensional feature space. The aim of this paper is to present a fast feature extraction method for real time human face recognition. first, It compute eigen-vector and eigen-value by Principle component analysis on inputed human face image, and propose method of feature extraction that make feature vector by apply gabor filter to computed eigen-vector. And it compute feature value which multiply by made eigen-value. This study simulations performed using the ORL Database.

  • PDF

Face Recognition Robust to Brightness, Contrast, Scale, Rotation and Translation (밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식)

  • 이형지;정재호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.149-156
    • /
    • 2003
  • This paper proposes a face recognition method based on modified Otsu binarization, Hu moment and linear discriminant analysis (LDA). Proposed method is robust to brightness, contrast, scale, rotation, and translation changes. Modified Otsu binarization can make binary images that have the invariant characteristic in brightness and contrast changes. From edge and multi-level binary images obtained by the threshold method, we compute the 17 dimensional Hu moment and then extract feature vector using LDA algorithm. Especially, our face recognition system is robust to scale, rotation, and translation changes because of using Hu moment. Experimental results showed that our method had almost a superior performance compared with the conventional well-known principal component analysis (PCA) and the method combined PCA and LDA in the perspective of brightness, contrast, scale, rotation, and translation changes with Olivetti Research Laboratory (ORL) database and the AR database.

Facial Feature Extraction Using Energy Probability in Frequency Domain (주파수 영역에서 에너지 확률을 이용한 얼굴 특징 추출)

  • Choi Jean;Chung Yns-Su;Kim Ki-Hyun;Yoo Jang-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.87-95
    • /
    • 2006
  • In this paper, we propose a novel feature extraction method for face recognition, based on Discrete Cosine Transform (DCT), Energy Probability (EP), and Linear Discriminant Analysis (LDA). We define an energy probability as magnitude of effective information and it is used to create a frequency mask in OCT domain. The feature extraction method consists of three steps; i) the spatial domain of face images is transformed into the frequency domain called OCT domain; ii) energy property is applied on DCT domain that acquire from face image for the purpose of dimension reduction of data and optimization of valid information; iii) in order to obtain the most significant and invariant feature of face images, LDA is applied to the data extracted using frequency mask. In experiments, the recognition rate is 96.8% in ETRI database and 100% in ORL database. The proposed method has been shown improvements on the dimension reduction of feature space and the face recognition over the previously proposed methods.

A Spatial Regularization of LDA for Face Recognition

  • Park, Lae-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • This paper proposes a new spatial regularization of Fisher linear discriminant analysis (LDA) to reduce the overfitting due to small size sample (SSS) problem in face recognition. Many regularized LDAs have been proposed to alleviate the overfitting by regularizing an estimate of the within-class scatter matrix. Spatial regularization methods have been suggested that make the discriminant vectors spatially smooth, leading to mitigation of the overfitting. As a generalized version of the spatially regularized LDA, the proposed regularized LDA utilizes the non-uniformity of spatial correlation structures in face images in adding a spatial smoothness constraint into an LDA framework. The region-dependent spatial regularization is advantageous for capturing the non-flat spatial correlation structure within face image as well as obtaining a spatially smooth projection of LDA. Experimental results on public face databases such as ORL and CMU PIE show that the proposed regularized LDA performs well especially when the number of training images per individual is quite small, compared with other regularized LDAs.