• 제목/요약/키워드: OLED panel

검색결과 139건 처리시간 0.022초

OLED TV Panel의 전류가속열화시험 설계 (Electric Current Accelerated Degradation Test Design for OLED TV)

  • 유지선;이득중;오창석;장중순
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권1호
    • /
    • pp.22-27
    • /
    • 2017
  • Purpose: The purpose of this study is to estimate the life time of OLED TV panel through electric current ADT(Accelerated Degradation Test). Methods: We performed accelerated degradation test for OLED TV Panel at the room temperature to avoid high temperature impact on the luminance. Results: we got more accurately the life time of the OLED TV when we applied ADT without temperature factor than including both current and temperature. Conclusion: Until now, the ADT of the OLED TV has been conducted with temperature and current at the same time for reducing test time and costs. We estimate incorrect life time when the temperature is adopted as an accelerated factor. Due to the high temperature impact on the luminance of the OLED TV panel. So as to solve this problem, we discard temperature and use electric current only.

OLED 조명산업 내 R&D 유망 분야 발굴 (The Detection of Promising R&D Fields m OLED Illumination Industry)

  • 심진보;김유진
    • 한국통신학회논문지
    • /
    • 제36권11B호
    • /
    • pp.1403-1412
    • /
    • 2011
  • 본 연구는 OLED 조명산업을 대상으로 직관적 방법론을 이용한 R&D 유망 분야 발굴 연구를 수행했다. 이를 위해 국내 조명산업 전문가 69명을 패널로 구성하여 1개월에 걸친 심층면접 및 설문조사를 진행하였다. 본 연구는 OLED 조명산업을 패널, 패널용 소재/부품, 제조장비, 조명시스템의 4개 분야로 대분류하고, 각 분야별로 핵심기술을 선정하여 총 14개의 R&D 가능분야를 세분류했다. 각 분야별 기술경쟁력을 평가한 결과, 우리나라의 기술경쟁력이 가장 높게 평가된 분야는 OLED 패널 분야로 나타났으며, 반면에 OLED 패널용 소재/부품의 기술경쟁력이 낮은 것으로 평가되어 개선책이 요구된다. 한편, 경제성, 정책부합성, R&D 효과성을 종합적으로 평가하여 7개 R&D 유망 분야를 선정했다. OLED 패널의 4가지 핵심기술인 백색, 투명, 색가변, 플렉시블 OLED 패널 제조 기술이 가장 유망한 분야로 평가되었고, 다음으로 면광원용 유기소재, 기판 소재/부품, 대면적 기판형성 장비가 유망 분야로 평가되었다.

OLED 패널 테스트를 위한 영상 발생기 설계 (Image Generator Design for OLED Panel Test)

  • 윤석문;이승호
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.25-32
    • /
    • 2020
  • 본 논문에서는 OLED 패널에 영상을 디스플레이 하면서 패널 불량 검사 및 광학 측정을 이용하여 색 좌표 및 휘도를 보상할 수 있는 OLED 패널 테스트를 위한 영상 발생기를 제안한다. 제안된 영상 발생기는 영상 발생 과정과 광학 측정을 이용한 색 좌표 및 휘도를 보상하는 과정 등의 2가지 과정으로 구성된다. 영상 발생 과정은 패널을 구동하기 위한 패널의 정보를 셋팅하고, 패널 정보에 맞게 영상 발생기의 출력 셋팅을 조절하여 영상을 출력한다. 영상의 출력 형태는 디지털 RGB 방식으로 구성된다. 영상발생기 내부의 패턴 발생 알고리즘은 패널의 해상도에 맞게 동기 신호를 기준으로 24비트 데이터 라인에 색데이터를 전송하는 방식으로 칼라 및 그레이 계열 영상 데이터를 출력한다. 광학 측정을 이용한 색 좌표 및 휘도를 보상하는 과정은 영상 발생기에서 영상을 OLED 패널에 출력하고, 광학 모듈로 측정한 색 좌표 및 휘도 데이터를 기준 데이터보다 차이나는 부분을 보상한다. 본 논문에서 제안된 OLED 패널 테스트를 위한 영상 발생기의 정확성을 평가하기 위해서 Xilinx 사의 Spartan 6 계열의 XC6SLX25-FG484 FPGA를 사용하였고 설계 툴은 ISE 14.5를 사용하였다. 영상 발생 과정의 출력은 오실로스코프를 이용한 디지털 RGB 출력에 대하여 목표로 한 설정 값과 시뮬레이션 결과 값이 일치함을 확인 할 수 있었다. 광학 측정을 이용한 색 좌표 및 휘도를 보상한 데이터는 패널 제조업체에서 제시한 오차율 이내의 정확도를 나타내었다.

Fabrication of Charge-pump Active-matrix OLED Display Panel with 64 ${\times}$ 64 Pixels

  • Na, Se-Hwan;Shim, Jae-Hoon;Kwak, Mi-Young;Seo, Jong-Wook
    • Journal of Information Display
    • /
    • 제7권1호
    • /
    • pp.35-40
    • /
    • 2006
  • Organic light-emitting diode (OLED) display panel using the charge-pump (CP) pixel addressing scheme was fabricated, and the results show that it is applicable for information display. A CP-OLED panel with 64 ${\times}$ 64 pixels consisting of thin-film capacitors and amorphous silicon Schottky diodes was fabricated using conventional thin-film processes. The pixel drive circuit passes electrical current into the OLED cell during most of the frame period as in the thin-film transistor (TFT)-based active-matrix (AM) OLED displays. In this study, the panel was operated at a voltage level of below 4 V, and this operation voltage can be reduced by eliminating the overlap capacitance between the column bus line and the common electrode.

Sound Quality Enhancement by using the Single Core Exciter in OLED Panel

  • Lee, Sungtae;Park, Kwanho;Park, Hyungwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.871-888
    • /
    • 2020
  • With the development of display engineering and technology, the screen and sound quality of information devices such as TVs are improving. The screen used LEDs via LCD and PDP and a large flat panel in the early CRT to create super-high resolution. The sound is improved by directly vibrating a thin and simple panel, such as an OLED. In our previous study, the exciter speaker was attached to the rear of the OLED panel to be used as the diaphragm of the speaker, and the sound quality was as good as that of the TV using the existing dynamic speaker. This method supplied the viewer with the direct sound coming from the panel, delivering clear sound, and the sound and image came from the same location, thus giving the viewer high immersion and maximizing the effect of information transfer. OLED exciter speakers, however, have a special directivity, which tends to slightly attenuate the tone at the very center of the screen. This study improves the sound quality by improving the structure of the exciter speaker and the radiated sound of the flat panel display. A 2-in-1 Exciter is made into a single core to improve the speaker's radiation pattern.

A new method for monitoring an OLED panel for lighting by sensing the wave-guided light

  • Han, Jun-Han;Moon, Jaehyun;Shin, Jin-Wook;Joo, Chul Woong;Cho, Doo-Hee;Hwang, Joohyun;Huh, Jin Woo;Chu, Hye Yong;Lee, Jeong-Ik
    • Journal of Information Display
    • /
    • 제13권3호
    • /
    • pp.119-123
    • /
    • 2012
  • In this work, we report on a new monitoring method for an organic light-emitting diode (OLED) panel for lighting by optical sensing of the wave-guided light in the substrate. Using microlens array films, the wave-guided light was extracted into the edge or back side of the panel to be monitored by a photodiode. The luminance of the extracted light was measured as linearly proportional to the front light. Thus, by converting the extracted light into photo voltage, monitoring the luminance change occurring in the OLED is possible. Based on the results and concepts, we have proposed a photodiode-equipped driving circuit which can generate compensated driving current for uniform luminance of OLED panels.

OLED display device의 Line Defect 시험법에 관한 연구 (A Study on OLED display device's line defect test methode)

  • 최영태;조재립
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 춘계학술대회
    • /
    • pp.523-529
    • /
    • 2009
  • The ACF(Anisotropic Conductive Film) is used for bonding Drive IC and OLED display device panel. If ACF bonding process is problem, a malfunction of line defect can occur. Because electric resistance increase between the panel and drive IC after a period of time, drive IC can not supply enough current to the panel. This paper is studied on a method of test for line defect.

  • PDF

광 검출기가 장착된 OLED 조명 시스템 (OLED Lighting System Integrated with Optical Monitoring Circuit)

  • 신동균;박종운;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.13-17
    • /
    • 2013
  • In lighting system where several large-area organic light-emitting diode (OLED) lighting panels are involved, panel aging may appear differently from each other, resulting in a falling-off in lighting quality. To achieve uniform light output across large-area OLED lighting panels, we have employed an optical feedback circuit. Light output from each OLED panel is monitored by the optical feedback circuit that consists of a photodiode, I-V converter, 10-bit analogdigital converter (ADC), and comparator. A photodiode generates current by detecting OLED light from one side of the glass substrate (i.e., edge emission). Namely, the target luminance from the emission area (bottom emission) of OLED panels is monitored by current generated from the photodiode mounted on a glass edge. To this end, we need to establish a mapping table between the ADC value and the luminance of bottom emission. The reference ADC value corresponds to the target luminance of OLED panels. If the ADC value is lower or higher than the reference one (i.e., when the luminance of OLED panel is lower or higher than its target luminance), a micro controller unit (MCU) adjusts the pulse width modulation (PWM) used for the control of the power supplied to OLED panels in such a way that the ADC value obtained from optical feedback is the same as the reference one. As such, the target luminance of each individual OLED panel is unchanged. With the optical feedback circuit included in the lighting system, we have observed only 2% difference in relative intensity of neighboring OLED panels.

OLED 패널의 기준패턴과 증착패턴의 크기 측정을 위한 패턴 동시 측정 시스템의 구현 (Implementing a Simultaneous Pattern Measurement System for Measuring the Size of the Standard Pattern and the Deposition Pattern of an OLED Panel)

  • 곽병호;최경주
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.117-127
    • /
    • 2019
  • Simultaneous pattern measurement system is new research subject for OLED panel inspection. It is defect inspection of OLED panel after deposition. This research suggests the system that calculates the size and center point of each patterns after obtaining standard and deposition pattern as one image. This system could be applied to OLED manufacturing process. The research result shows that the size and center point of each patterns could be obtained by displaying the standard pattern and deposition pattern in one image.

Edge Detecting Algorithm을 이용한 OLED 보호 필름의 Real Time Inspection에 대한 연구 (A study on real time inspection of OLED protective film using edge detecting algorithm)

  • 한주석;한봉석;한유진;최두선;김태민;고강호;박정래;임동욱
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.14-20
    • /
    • 2020
  • In OLED panel production process, it is necessary to cut a part of protective film as a preprocess for lighting inspection. The current method is to recognize only the fiducial mark of the cut-out panel. Bare Glass Cutting does not compensate for machining cumulative tolerances. Even though process defects still occur, it is necessary to develop technology to solve this problem because only the Align Mark of the panel that has already been cut is used as the reference point for alignment. There is a lot of defective lighting during panel lighting test because the correct protective film is not cut on the panel power and signal application pad position. In laser cutting process to remove the polarizing film / protective film / TSP film of OLED panel, laser processing is not performed immediately after the panel alignment based on the alignment mark only. Therefore, in this paper, we performed real time inspection which minimizes the mechanism tolerance by correcting the laser cutting path of the protective film in real time using Machine Vision. We have studied calibration algorithm of Vision Software coordinate system and real image coordinate system to minimize inspection resolution and position detection error and edge detection algorithm to accurately measure edge of panel.