• 제목/요약/키워드: OLED materials

검색결과 462건 처리시간 0.027초

열 활성 지연 형광(TADF) 재료의 특허 분석 (The Patent Analysis of Thermally Activated Delayed Fluorescence Materials)

  • 조대성;성민재;김민호;최승철
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.105-111
    • /
    • 2019
  • The TADF (Thermally Activated Delayed Fluorescence)-based OLED patents were analyzed and 4410 of patents were selected at the first step. And 975 patents were screened at second step. Finally, 39 key patents were selected. Patent qualitative analysis was performed in these patents to find which of the four property (lifetime, efficiency, color purity, driving voltage) of TADF was improved. Also, the variation of the hosts and dopants in patented TADF material were surveyed and their combination was analyzed. According to the analysis of the variation and the combination, some of TADF compounds were used as an assistant dopant to transfer energy. In addition, it tended to transfer energy by forming exciplex that shows TADF characteristics. These were similar to the mechanism of the introduced hyper fluorescence and could solve the inherent TADF problems. Finally, patent citation network was illustrated to visualize the patent citations and citations relationship of the major applicants in the current TADF-based OLED technology. The leading patent applicant organization was revealed as Idemitsu Kosan, Semiconductor Energy Laboratory, UDC, Princeton University, Merck and Nippon Steel & Sumikin Chemical, which had lots of reference patents 559, 524, 477, 310, 258, and 167, respectively.

산소 유량에 따른 IZO 박막의 전기적 및 광학적 특성 (Electrical and Optical Characteristics of IZO Thin Films Deposited in Different Oxygen Flow Rate)

  • 권수경;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제12권4호
    • /
    • pp.49-54
    • /
    • 2013
  • In this study, we have investigated the effect of the substrate temperature and oxygen flow rate on the characteristics of IZO thin films for the OLED (organic light emitting diodes) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $O_2$ flow rate. In order to investigate the influences of the oxygen, the flow rate of oxygen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. IZO thin films deposited at room temperature show amorphous structure, whereas IZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation regardless of $O_2$ flow rate. The electrical resistivity of IZO film increased with increasing flow rate of $O_2$ under Ar+$O_2$. The change of electrical resistivity with increasing flow rate of $O_2$ was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IZO films deposited at R.T. was lower than that of the crystalline-IZO thin films deposited at $300^{\circ}C$. The change of electrical resistivity with increasing substrate temperature was mainly interpreted in terms of the charge carrier mobility rather than the charge carrier concentration. All the films showed the average transmittance over 85% in the visible range. The current density and the luminance of OLED devices with IZO thin films deposited at room temperature in 0.1sccm $O_2$ ambient gas are the highest amongst all other films. The optical band gap energy of IZO thin films plays a major role in OLED device performance, especially the current density and luminance.

GDI 호스트-도펀트 형광체를 이용한 청색 OLED의 제작과 특성 평가 (Fabrication and Characterization of Blue OLED using GDI Host-Dopant Phosphors)

  • 장지근;신세진;강의정;김희원;장호정;오명환;김영섭;이준영;공명선;이영관
    • 한국재료학회지
    • /
    • 제16권4호
    • /
    • pp.253-256
    • /
    • 2006
  • The blue emitting OLEDs using GDI host-dopant phosphors have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4'-tris(2-naphthylphenyl-phenylamino)- triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium thin oxide)/glass substrate by vacuum evaporation. And then, blue color emission layer was deposited using GDI602 as a host material and GDI691 as a dopant. Finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/GDI602:GDI691/Alq3/LiF/Al were obtained by in-situ deposition of Alq3, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Blue OLEDs fabricated in our experiments showed the color coordinate of CIE(0.14, 0.16) and the maximum power efficiency of 1.1 lm/W at 11 V with the peak emission wavelength of 464 nm.

투명 산화물 트랜지스터

  • 박상희;황치선;조두희;유민기;윤성민;정우석;변춘원;양신혁;조경익;권오상;박은숙
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.13.1-13.1
    • /
    • 2009
  • Transparent electronics has attracted many interests, for it can open new applications for consumer electronics, transportation, business, and military. Among them, display backplane, thin film transistor (TFT) array would be the most attractive application. Many researchers have been investigating oxide semiconductors for transparent channel material of TFT since the report for transparent amorphous oxide semiconductor (TAOS) TFT by Hosono group and ZnO TFT by Wager group. Especially, oxide TFTs have been intensively investigated during a couple of years since the first demonstration of ZnO-TFT driving AM-OLED. Many papers regarding the fabrication and performance of oxide TFTs, and active matrix display driven by oxide TFTs have been reported. Now lots of people have confidence in the competitiveness of oxide TFTs for the backplane of AM-Display. Especially, high mobility, uniformity, fairly good stability, and low cost process make oxide TFTs applied even to a large size AM-OLED. Last year, Samsung mobile display, former SID, reported 12" AM-OLED driven by IZGO-TFT and it seems that the remained issue for the mass production is the bias temperature stability. Here, we will introduce the application of oxide TFT and important issue for oxide TFT to be used for the direct printing.

  • PDF

우수한 대전방지 및 기계적 성질을 가지는 다공성 산화티탄-산화망간 세라믹스 제조 (Fabrication of porous titanium oxide-manganese oxide ceramics with enhanced anti-static and mechanical properties)

  • 유동수;황광택;김종영;정종열;백승우;심우영
    • 한국결정성장학회지
    • /
    • 제28권6호
    • /
    • pp.263-270
    • /
    • 2018
  • 최근 반도체, 디스플레이 제조장비용 세라믹소재로 대전방지 기능을 가지는 다공성 세라믹스가 시급히 요구되고 있다. 본 연구에서는 다공성 산화티탄-산화망간 기지상에 산화티탄 나노분말을 첨가하여 부분소결함으로써 $10^8-10^{10}$ ohm의 표면저항을 가지고 향상된 기계적 강도를 가지는 다공성 세라믹스를 제조하였다. 나노 크기의 산화티탄 분말을 첨가함으로써 입자 사이의 목 형성을 강화하였고, 그 결과 꺽임강도를 170 MPa(@기공률 15 %), 110 MPa(@기공률 31 %) 수준으로 증가시킬 수 있었다. 이는 P-25를 첨가하지 않았을 때의 꺽임강도(80 MPa @ 기공률 26 %)에 비하여 주목할만큼 증가한 값으로 단순한 기공률 감소가 아닌 목 형성등 미세구조 변화에 따른 것으로 판단된다. 개발 세라믹스를 적용한 OLED 유연소자 제조공정용 공기부상용 모듈을 제작하여 진공척의 성능을 평가하였다.

9-Arylated Carbazole을 주리간드로 사용하는 Heteroleptic Iridium(III) 착물의 합성과 분광학적 특성 (Synthesis and Photoluminescence Properties of Heteroleptic 9-Arylated Carbazole Iridium(III) Complexes)

  • 오세환;염을균;김영훈;임영재;허정석;김영준
    • 공업화학
    • /
    • 제32권2호
    • /
    • pp.180-189
    • /
    • 2021
  • Cu(I) 촉매를 사용하여 열반응을 이용한 N-heteroaryl carbazole을 합성하였고 이를 새로운 heteroleptic Ir(III) 착물 합성을 위한 주리간드로 사용하였다. 새로운 Ir(III) 착물은 일반적인 Ir(III) 착물이 가지는 5각 고리가 아닌 6각 고리를 주리간드와 Ir 금속 결합 사이에서 형성하는 것으로 X-ray 단결정구조를 통해 확인할 수 있었다. 합성한 Ir(III) 착물들은 좋은 인광 특성을 나타내므로 OLED 발광층 재료물질로의 가능성을 보여주었다. 주리간드와 보조리간드 변화에 따른 분광학적 특성을 고찰하였는데 PL 최대 발광 파장(λmax) 변화는 보조리간드가 Ir 금속과 더 강한 결합을 만들수록 단파장 쪽으로 이동하는 것을 발견하였다. 또한, 주리간드에 대해서는 Ir-N 결합을 만드는 헤테로아릴 그룹의 아로마틱고리 전자밀도가 커질수록 단파장 쪽으로 이동하는 경향이 있는 것을 알 수 있었다.

OLED를 위한 저분자 재결정 방지 코팅 기술 (Recrystallization-Free Coating of Small Molecules for OLEDs)

  • 홍기영;이진영;신동균;박종운;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.38-42
    • /
    • 2016
  • We investigate the solution coating process of organic small molecules that are easily recrystallized in a solvent. The spin-coated films of small molecule N,N'-diphenly-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) exhibit many aggregations on the surface and thus poor surface morphology. To tackle it, we have added a chain-entangled polymer poly(N-vinylcarbazole) (PVK) into the NPB solution. It is found that a small amount of PVK indeed prohibits the recrystallization of NPB in a solvent. By the addition of PVK (30 wt%), the peak-to-peak roughness of the films is reduced from 262 nm down to 2.7 nm, which is even lower than that (~5.1 nm) of the polymer film. It is also demonstrated that OLED with the PVK-mixed NPB film shows higher current and power efficiencies, compared to OLED with the NPB or PVK film. It is attributed that the addition of PVK into NPB suppresses the occurrence of leaky channels induced by the recrystallization phenomenon.

재결정화법에 의한 유기물 재활용 및 이를 이용한 습식 OLED 제작 (Recycling of Organic Materials Using Purification by Recrystallization for Solution-Processed OLEDs)

  • 이진환;홍기영;신동균;이진영;박종운;서화일;서유석
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.65-69
    • /
    • 2016
  • We have investigated the possibility of recycling of an organic material that is wasted during thermal evaporation. To this end, we have collected a wasted organic material (N,N'-diphenly-N,N'-bis(1,1'-biphenyl)-4,4'-diamine(NPB)) from a vacuum chamber, purified it by recrystallization, and fabricated bilayer organic light-emitting diodes (OLEDs) with the recycled NPB. It is found that the surface roughness of thin films coated with the purified NPB is much enhanced. OLEDs fabricated by thermal evaporation of the purified NPB show lower device efficiency than OLEDs with the original NPB. However, the power efficiency of OLED fabricated by spin coating of the purified NPB is comparable with that of OLED with the original NPB. Therefore, such a recycling method by recrystallization would be more suitable for solution-processed OLEDs.

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • 김윤학;박순미;권순남;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

Advances in jet dispensing for flat panel applications

  • Ratledge, Thomas;Suriawidjaja, Floriana
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1455-1461
    • /
    • 2006
  • As OLED manufacturing matures, it requires larger substrate processing. The larger substrates require higher dispensing throughput for UV sealants. Jetting the gaskets of seal materials has provided an increase in performance and dispensing capability. This paper describes the jetting process and deposition capability for applying the UV sealants.

  • PDF