• Title/Summary/Keyword: OIL

Search Result 15,729, Processing Time 0.039 seconds

Effect of Random Interesterification on the Physicochemical Properties in Blends of Corn Germ Oil and Fully Hydrogenated Soybean Oil (옥수수기름과 극도경화대두 혼합유의 이화학적 성질에 대한 무작위 에스테르 교환의 영향)

  • Shin, Hyo-Sun;Chung, Kwang-Hyun;Chun, Je-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.360-365
    • /
    • 1991
  • Effect of random interesterification on the physicochemical properties in blends of corn germ oil and fully hydrogenated soybean oil was studied. Interesterification by using 0.4% sodium methoxide at $80^{\circ}C$ was completed in 35 minutes as determined by HPLC analysis for triglyceride composition. Changes of melting point, solid fat content, crystal form, fatty acid and triglyceride composition was investigated. After the interesterification, melting point and solid fat content were decreased, and coarse and large crystals were modified to fine and uniform. Fatty acid composition was not altered but triglyceride composition was largely altered. Interesterified blends of corn germ oil and fully hydrogenated soybean oil made with 80%, 20% and 75%. 25%, respectively, had desirable characteristics of the margarine for home use.

  • PDF

Quality Characteristics of Omija Jelly Prepared with Various Starches by the Addition of Oil and Chitosan (유지 및 키토산 첨가가 여러 가지 전분으로 제조한 오미자 젤리의 품질 특성에 미치는 영향)

  • Lyu, Hyun-Ju;Oh Myung Suk
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.877-887
    • /
    • 2005
  • This study determined the effects of soybean oil$2\%$) and chitosan($1\%$) on the quality characteristics of Omija Jelly made of various starches (mungbean starch, cowpea starch and corn starch). RVA(Rapid Visco Analyzer) viscosity was measured for starches suspended in Omija aextract with $2\%$ soybean oil and $1\%$ chitosan. The color value, syneresis, texture(rupture test and TPA test) and sensory properties of the samples were measured. Gelatinization of cowpea starch was expedited by adding soybean oil and chitosan. Otherwise, gelatinization of mungbean starch and com starch was retarded by adding chitosan. The lightness(L) and the syneresis of Omija Jelly with soybean oil and chitosan were decreased, indicating the increased transparency and stability of Omija Jelly. Rupture stress and rupture energy of Omija Jelly were decreased by adding soybean oil. Rupture stress was increased and rupture energy was decreased by adding chitosan. The addition of soybean oil improved texture of Omija Jelly, indicating that the springiness, cohesiveness and chewiness of Omija Jelly were increased and adhesiveness was decreased. By adding chitosan, the springiness and hardness of Omija Jelly were increased and the cohesiveness and adhesiveness were decreased. The overall acceptability of Omija Jelly made of $6%$ or $7\%$ cowpea starch and com starch was increased by adding soybean oil and chitosan, but the quality characteristics of Omija Jelly made of mungbean starch were not influenced by additives such as soybean oil and chitosan.

Relationship between Baltic Dry Index and Crude Oil Market (발틱 운임지수와 원유시장 간의 상호관련성)

  • Choi, Ki-Hong;Kim, Dong-Yoon
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.4
    • /
    • pp.125-140
    • /
    • 2018
  • This study uses daily price data on three major types of crude oil (Brent, Dubai, and WTI) and BDI from January 2, 2009 to June 29, 2018, to compare the relationship between crude oil prices and BDI for rate of change and volatility. Unlike previous studies, the correlation between BDI and crude oil prices was analyzed both the rate of change and variability, VARs, Granger Causality Test, and the GARCH and DCC models were employed. The correlation analysis, indicated that the crude oil price change rate and volatility affect the BDI change rate and that BDI volatility affects the crude oil price change rate and volatility. The relationship between oil prices and BDI is identified, but their correlation is low, which is likely a result of lower dependence on crude oil as demand for natural gas increases worldwide and demand for renewable energy decreases. These trends could result in lower correlations over time. Therefore, focusing on the changing demand for raw materials in future investments in international shipping(real economy) and oil markets and macroeconomic analysis is necessary.

Thermal Stability and Lifetime Prediction of PAG and POE Oils for a Refrigeration System

  • Park, Keun-Seo;Kang, Byung-Ha;Park, Kyoung-Kuhn;Kim, Suk-Hyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2007
  • An experimental study has been carried out to analyze the thermal stability and to estimate the lifetime of refrigerating lubricants. PAG and POE oil are considered as test oils in this study. The viscosity of PAG and POE oil was measured by the vibration type viscometer while temperature is varied periodically in the range of $0^{\circ}C{\sim}100^{\circ}C$. In order to estimate lifetime of PAG and POE oil with temperature, the viscosity was measured while the test temperature of oils was maintained continuously at $180,\;200\;and\;220^{\circ}C$. The lifetime of oils is estimated as the decrease in viscosity change by 15%. The results indicate that the reduction rates of viscosity of PAG and POE oil are less than 5% after 510 temperature variation cycles. However, when the oils are kept at high temperature, it is found that the lifetimes of PAG oil is seen to be 244, 177 and 89 hours at the test temperature of $180,\;200\;and\;220^{\circ}C$, respectively, where as the lifetimes of POE oil are estimated to be 1,744, 1,007 and 334 hours at the temperature of $180,\;200\;and\;220^{\circ}C$, respectively. Thus, the lifetime of POE oil is found to be much longer than that of PAG oil. The lifetime correlations of PAG and POE oil are also obtained by Arrhenius's equation method in this paper.

Evaluation of Bioremediation Efficiency of Crude Oil Degrading Microorganisms Depending on Temperature (온도에 따른 원유분해미생물의 생물학적 정화효율 평가)

  • Kim, Jong-Sung;Lee, In;Jeong, Tae-Yang;Oh, Seung-Taek;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • Bioremediation is one of the most effective ways to remediate TPH-contaminated sites. However, under actual field conditions that are not at the optimum temperature, degradation of microorganisms is generally reduced, which is why the efficiency of biodegradation is known to be significantly affected by the soil temperature. Therefore, in this study, the labscale experiment was conducted using indigenous crude oil degrading microorganisms isolated from crude oil contaminated site to evaluate the remediation efficiency. Crude oil degrading microorganisms were isolated from crude oil contaminated soil and temperature, which is a significant factor affecting the remediation efficiency of land farming, was adjusted to evaluate the microbial crude oil degrading ability, degradation time, and remediation efficiency. In order to assess the field applicability, the remediation efficiency was evaluated using crude oil contaminated soil (average TPH concentration of 10,000 mg/kg or more) from the OO premises. Followed by the application of microorganisms at 30℃, the bioremediation process reduced its initial TPH concentration of 10,812 mg/kg down to 1,890 mg/kg in 56 days, which was about an 83% remediation efficiency. By analyzing the correlation among the total number of cells, the number of effective cells, and TPH concentration, it was found that the number of effective microorganisms drastically increased during the period from 10 to 20 days while there was a sharp decrease in TPH concentration. Therefore, we confirmed the applicability of land farming with isolated microorganisms consortium to crude oil contaminated site, which is also expected to be applicable to bioremediation of other recalcitrant materials.

Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk

  • Moghadam, Farideh Vahid;Pourahmad, Rezvan;Mortazavi, Ali;Davoodi, Daryoush;Azizinezhad, Reza
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.309-323
    • /
    • 2019
  • Fish oil consists of omega-3 fatty acids which play an important role in human health. Its susceptibility to oxidation causes considerable degradation during the processing and storage of food products. Accordingly, encapsulation of this ingredient through freeze drying was studied with the aim of protecting it against environmental conditions. Gum arabic (GA) was used as the wall material for fish oil nanoencapsulation where tween 80 was applied as the emulsifier. A water-in-oil (W/O) emulsion was prepared by sonication, containing 6% fish oil dispersed in aqueous solutions including 20% and 25% total wall material. The emulsion was sonicated at 24 kHz for 120 s. The emulsion was then freeze-dried and the nanocapsules were incorporated into probiotic fermented milk, with the effects of nanocapsules examined on the milk. The results showed that the nanoparticles encapsulated with 25% gum arabic and 4% emulsifier had the highest encapsulation efficiency (EE) (87.17%) and the lowest surface oil (31.66 mg/100 kg). Using nanoencapsulated fish oil in fermented milk significantly (p<0.05) increased the viability of Lactobacillus plantarum as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents. The fermented milk sample containing fish oil nanoencapsulated with 25% wall material and 4% emulsifier yielded the greatest probiotic bacterial count (8.41 Log CFU/mL) and the lowest peroxide value (0.57 mEq/kg). Moreover, this sample had the highest EPA and DHA contents. Utilizing this nanoencapsulated fish oil did not adversely affect fermented milk overall acceptance. Therefore, it can be used for fortification of low fat probiotic fermented milk.

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Separation and Characteristics of Essential Oil from Dendropanax morbiferus (황칠나무 정유의 분리 및 특성)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.44-49
    • /
    • 2022
  • Essential oil was separated from Dendropanax morbiferus (DM) by means of hot water extraction and supercritical extraction, respectively, and the separated essential oil was analyzed qualitatively and quantitatively, and the antioxidant effect of essential oil was investigated. In addition, yields of essential oil and Caryophyllene according to the drying and extraction methods for each part of DM were obtained and compared, respectively. The yield of essential oil was found to be high in the order of bark > leaves > twigs > limb. When the freeze-dried DM leaves were supercritically extracted, the yields of essential oil and Caryophyllene were 23.2 g/kg DM and 429.6 mg Caryophyllene/kg DM, respectively. The essential oil of DM showed an antioxidant effect even at a low concentration, and the concentration of the essential oil of SC50, which means 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, was about 0.34%.

Organoleptic Quality Assessment of Dairy and Nondairy Products Supplemented with Ginger Oil: A Preliminary Study

  • Kim, Tae-Jin;Seo, Kun-Ho;Chon, Jung-Whan;Youn, Hye-Young;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.110-121
    • /
    • 2022
  • The root of ginger (Zingiber officinale) contains gingerol, which is known to be responsible for its pharmacological activity. The essential oil extracted from ginger has been found to have various pharmacological effects. Thus, interest in the development of various beverages using ginger oil has recently increased. Therefore, in this study, the organoleptic quality assessment of cow milk, yogurt, kefir, soy milk, oat milk, and almond milk was conducted by supplementing them with oil extracted from ginger at various concentrations (supplemented with 0.5% increments from 0% up to 2%). A poor grade was obtained in the organoleptic quality evaluation, owing to the strong odor of ginger oil. However, when compared to that of the control, the samples supplemented with 0.5% ginger oil showed a good grade of organoleptic quality assessment. Therefore, this study is considered valuable as it is the first study to review the organoleptic quality assessment by supplementing milk, yogurt, kefir, soy milk, oat milk, and almond milk with ginger oil. Additionally, in order to improve organoleptic quality assessment, it is critical to estimate how much ginger oil supplementation concentration could be reduced and whether ginger oil exhibits various bio-activities at this concentration.

Characteristics of Flavor Reversion in Seasoning Oil using Sunflowerseed Meal (해바라기박을 이용한 향미유의 변향특성)

  • Koo, Bon-Soon;Seo, Mi-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.6
    • /
    • pp.808-812
    • /
    • 2007
  • Seasoning oils(SO) were manufactured by direct fire method(DFM) and autoclaving method(AM) using sunflower seed meal. The SO manufactured by DFM is stronger than that by AM for Lovibond color and flavor strength. The flavor strength of 2 kinds SOs were lower than sesame oil as a control group. But acid value of SOs were superior than sesame oil, 0.452, 0.463 and 1.987, respectively. The level of Lovibond color for 2 kinds of sample seasoning oil was similar. Composition and contents of total volatile flavor components were determined from their essential oils of sesame oil and 2 kinds sample seasoning oils. As a result, total volatile flavor contents of sesame oil was 1,300.6 ppm, and that of seasoning oil samples were 697.8 ppm, 648.2 ppm, respectively. Major volatile flavor components of seasoning oil were 2-butanone, hexanal, methyl pyrazine etc. In contrast, major volatile flavor component of sesame oil was pyrazines, but that was not a major component of 2 kinds of sample seasoning oils.