• 제목/요약/키워드: OF(Objective Function)

검색결과 4,578건 처리시간 0.033초

SVQR with asymmetric quadratic loss function

  • Shim, Jooyong;Kim, Malsuk;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1537-1545
    • /
    • 2015
  • Support vector quantile regression (SVQR) can be obtained by applying support vector machine with a check function instead of an e-insensitive loss function into the quantile regression, which still requires to solve a quadratic program (QP) problem which is time and memory expensive. In this paper we propose an SVQR whose objective function is composed of an asymmetric quadratic loss function. The proposed method overcomes the weak point of the SVQR with the check function. We use the iterative procedure to solve the objective problem. Furthermore, we introduce the generalized cross validation function to select the hyper-parameters which affect the performance of SVQR. Experimental results are then presented, which illustrate the performance of proposed SVQR.

유사생물학적 대상 함수를 이용한 IMRT 최적화 알고리즘 가능성에 관한 연구 (A Feasibility Study of the IMRT Optimization with Pseudo-Biologic Objective Function)

  • 이병용;조삼주;안승도;김종훈;최은경;장혜숙;권수일
    • Journal of Radiation Protection and Research
    • /
    • 제26권4호
    • /
    • pp.417-424
    • /
    • 2001
  • 세기 조절 방사선 치료 최적화 대상 함수로 이용하기 위하여 유사 생물학적 대상 함수를 고안하여, 그 가능성을 살펴보았다. 치료 계획 장치는 본 연구진이 개발한 RTP Tool Box(RTB)를 사용하였다. 수학적으로 생물학적 대상 함수와 비슷하나, 사용하는 상수들은 물리적인 인자를 사용한 유사 생물학적(Pseudo-biologic) 대상 함수를 도입하였다. 치료하고자 하는 표적에 대하여는 표적 포함인자(TCI, Target Coverage Index) 개념을 도입하였고, 정상 장기에 대해서는 조직성적 인자(OSI, Organ Score Index) 개념을 도입하였다. 또한 TCI와 OSI 개념을 사용하여 대상함수 S를 정의하였다. 어떤 종류의 대상 함수를 사용하든 표적 선량의 분포는 비슷한 추세를 보였으나, 유사 생물학적 대상 함수를 사용한 경우 정상 조직의 선량 분포가 물리적인 대상 함수를 사용한 치료 계획보다 낮게 나와 세기조절 방사선 치료의 대상 함수로 사용할 수 있음을 보였다.

  • PDF

ON THE CONVERGENCE OF THE UOBYQA METHOD

  • Han, Lixing;Liu, Guanghui
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.125-142
    • /
    • 2004
  • We analyze the convergence properties of Powell's UOBYQA method. A distinguished feature of the method is its use of two trust region radii. We first study the convergence of the method when the objective function is quadratic. We then prove that it is globally convergent for general objective functions when the second trust region radius p converges to zero. This gives a justification for the use of p as a stopping criterion. Finally, we show that a variant of this method is superlinearly convergent when the objective function is strictly convex at the solution.

A Multi-Resource Leveling Algorithm for Project Networks

  • Lee, Chung-Ung
    • 한국국방경영분석학회지
    • /
    • 제3권1호
    • /
    • pp.123-136
    • /
    • 1977
  • This thesis presents a modification and extension to the Burgess and Killebrew heuristic resource leveling procedure for project networks. In contrast to previous algorithms appearing in the literature, the objective function of this algorithm. is the minimization of the sum of the squared errors in each time period (deviations around the mean usage) of all resources over the duration of the project. This objective function continues the search for an improved schedule beyond that of previous algorithms with their associated objective functions. One important feature is that the algorithm tends to reduce the number of periods that a resource is idle during its duration on the project.

  • PDF

Multi-Objective Optimization Using Kriging Model and Data Mining

  • Jeong, Shin-Kyu;Obayashi, Shigeru
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, a surrogate model is applied to multi-objective aerodynamic optimization design. For the balanced exploration and exploitation, each objective function is converted into the Expected Improvement (EI) and this value is used as fitness value in the multi-objective optimization instead of the objective function itself. Among the non-dominated solutions about EIs, additional sample points for the update of the Kriging model are selected. The present method was applied to a transonic airfoil design. Design results showed the validity of the present method. In order to obtain the information about design space, two data mining techniques are applied to design results: Analysis of Variance (ANOVA) and the Self-Organizing Map (SOM).

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • 제5권2호
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

보수적 근사모델을 적용한 신뢰성 기반 강건 최적설계 방법 (Study of Reliability-Based Robust Design Optimization Using Conservative Approximate Meta-Models)

  • 심형민;송창용;이종수;최하영
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.80-85
    • /
    • 2012
  • The methods of robust design optimization (RDO) and reliability-based robust design optimization (RBRDO) were implemented in the present study. RBRDO is an integrated method that accounts for the design robustness of an objective function and for the reliability of constraints. The objective function in RBRDO is expressed in terms of the mean and standard deviation of an original objective function. Thus, a multi-objective formulation is employed. The regressive approximate models are generated via the moving least squares method (MLSM) and constraint-feasible moving least squares method (CF-MLSM), which make it possible to realize the feasibility regardless of the multimodality/nonlinearity of the constraint function during the approximate optimization processes. The regression model based RBRDO is newly devised and its numerical characteristics are explored using the design of an actively controlled ten bar truss structure.

수질학적 관점에서의 수문모델 유출량 보정 방법 평가 (Evaluating Calibration Methods of Stream Flow for Water Quality Management)

  • 전지홍;최동혁;김정진;김태동
    • 한국물환경학회지
    • /
    • 제25권3호
    • /
    • pp.432-440
    • /
    • 2009
  • The effect of selecting hydrologic item for calculating objective function on calibration of stream flow was evaluated by Hydrologic Simulation Porgram-Fortran (HSPF) linked with Model Independent Parameter Optimizer (PEST). Daily and monthly stream flow and flow duration were used to calculate objective function. Automated calibration focused on monthly stream was proper to analyze seasonal or yearly water budget but not proper to predict daily stream flow or percent chance flow exceeded. Calibration result focused on flow duration is proper to predict precent chance flow exceeded but not proper to analyze water budget or predict peak flow. These results indicate that hydrologic item calculated for objective function on calibration procedure could influence calibration results and watershed modeler should select carefully hydrologic item for the purpose of model application. Current, the criteria of stream flow of Korean TMDL is generated based on percent chance flow exceeded, so flow duration should be included to calculate objective function on calibration procedure for the estimation of criteria of stream flow using hydrologic model.

차로배정 최적화를 고려한 신호교차로 운영방안에 관한 연구 (A Study on Operation Methodology of A Signalized Intersection Based on Optimization of Lane-Uses)

  • 김주현;신언교
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.125-133
    • /
    • 2013
  • PURPOSES : The purpose of this study is to propose delay-minimizing operation methodology of a signalized intersection based upon optimization of lane-uses on approaching lanes for an intersection. METHODS : For the optimization model of lane-uses, a set of constraints are set up to ensure feasibility and safety of the lane-uses, traffic flow, and signal settings. Minimization of demand to saturation flow ratio of a dual-ring signal control system is introduced to the objective function for delay minimization and effective signal operation. Using the optimized lane-uses, signal timings are optimized by delay-based model of TRANSYT-7F. RESULTS : It was found that the proposed objective function is great relation with delay time for an intersection. From the experimental results, the method was approved to be effective in reducing delay time. Especially, cases for two left-turn lanes reduced greater delays than those for a left turn lane. It is noticed that the cases for different traffic volume by approach reduced greater delays than those for the same traffic volume by approach. CONCLUSIONS : It was concluded that the objective function is proper for lane-uses optimizing model and the operation method is effective in reducing delay time for signalized intersections.

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.