• 제목/요약/키워드: OD Based Trip

검색결과 20건 처리시간 0.026초

기종점통행량(O/D) 기반의 고속도로 통행실적 산정 방법론 연구 (Methodology for Estimating Highway Traffic Performance Based on Origin/Destination Traffic Volume)

  • 이호원;홍정열;최윤혁
    • 한국ITS학회 논문지
    • /
    • 제23권2호
    • /
    • pp.119-131
    • /
    • 2024
  • 고속도로의 효율적 운영과 지속가능한 이동환경 제공을 위해 정확한 통행실적의 파악은 필수적이다. 그러나 인프라 및 기술적 제약, 추정을 통한 기존 연구방법의 한계, 통합 빅데이터 활용의 제약 등의 이유로 즉각적이고 정확한 고속도로 통행실적 산정에 어려움이 있다. 이에 본 연구는 자동요금징수시스템, 단거리전용통신 등으로부터 수집된 실시간 빅데이터를 활용하여 개별 차량의 고속도로 기종점통행량(Origin-Destination: OD) 및 주행거리를 분석하고 이를 기반으로 고속도로 통행실적을 산정하는 방법론의 틀을 제시하였다. 특히 데이터상 하나의 통행임에도 불구하고 분할된 통행으로 나타나는 데이터상 오류를 통행궤적 및 주행특성 진단을 통해 올바르게 연결함으로써 보다 신뢰성 있는 고속도로 통행 OD를 구축하고자 하였다. 연구 결과 개별 차량의 분할된 OD 통행이 20분 내 연속되는 경우 통행연결이 필요하며 통행연결, 주행거리 산정, 누락교통량 비율 보정, 비연계 구간 연계 과정을 거쳐 전국 고속도로의 일평균 통행실적은 248,624천대·km/일로 도출되었다. 이는 도로업무편람에서 제시하는 248,166천대·km/일과 비교 시 약 458천대·km/일이 높았다. 본 연구의 결과는 기존의 조사과정에서 누락된 통행실적의 보완가능성을 보여준다.

3-D 기법을 이용한 TCS기반 전국 교통수요 추정 연구 (3-Dimensional Balancing Technique for Nationwide Travel Demand Model using Toll Collecting System Data)

  • 이승재;이헌주
    • 대한교통학회지
    • /
    • 제20권4호
    • /
    • pp.63-72
    • /
    • 2002
  • 본 연구는 교통수요 추정에 관련된 사회경제적 통계자료와 여러 기관에서 발표된 Data를 바탕으로 TCS OD의 통행특성을 반영한 전국 교통수요를 추정하였다. 추정된 교통수요의 신뢰성을 검증하기 위해 전국을 8개권역으로 구분하여 권역별로 통행량을 비교하였으며, 통계적인 오차분석 기법을 이용하여 관측교통량과 배정교통량의 차이를 비교하였다. 그리고 추정된 교통수요의 통행시간분포(TLFD)와 주요도시간 통행소요시간을 분석하여 2-D와 3-D기법으로 추정된 교통수요의 신뢰성을 검증하였다. 신뢰성분석 및 검증결과 본 연구에서의 상황하에서는 3-D기법이 2-D기법보다는 TCS OD의 통행특성 및 패턴을 잘 반영하는 것으로 분석되었지만, 3-D기법이 전적으로 우수하다라고 단언할 수는 없을 것 같다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

복합 통행행태모형을 이용한 동적 기.종점 통행량 추정 (Dynamic OD Estimation with Hybrid Discrete Choice of Traveler Behavior in Transportation Network)

  • 김채만;조중래
    • 대한교통학회지
    • /
    • 제24권6호
    • /
    • pp.89-102
    • /
    • 2006
  • 정적 기 종점 통행량을 가정함으로써 갖는 동적 시뮬레이션 모형의 현실 모사 능력의 한계를 극복하기 위하여 동적 기 종점 통행량 추정 모형을 개발하였다 동적 기 종점 통행량 추정은 통행자의 출발시간, 통행수단. 통행경로 선택 행태모형을 결합한 복합통행행태 수요시뮬레이션 모형을 이용하였다 본 연구에서 개발된 수요 시뮬레이션 모형과 기 개발된 공급 시뮬레이션 모형인 LiCROSiM-P를 결합하여 통합 시뮬레이션 모형을 구축하였다. 단속류/연속류가 공존하는 다경로 가로망에서 출발시간/수단선택/통행경로 선택모형은 AGtt(기 종점통행시간의 시뮬레이션 시간과 기대치의 차이 백분율)는 수렴하지 않고, 평균스케줄지체는 안정 상태로 수렴하는 것으로 나타났다. 통합 시뮬레이션 모형은 교통시설공급 변화와 통행자의 속성 변화에 따른 기 종점 통행량 변화 추정과 효과분석이 가능함을 모형의 적용을 통해 제시하였다. 따라서 통합시뮬레이션 모형은 수요관리정책, 교통시설변화, 교통정보제공 등이 가져오는 출발시간, 통행수단, 통행경로변화를 반영한 시스템의 효과분석이 가능하다

존 데이터 기반 수단분담모형에 관한 연구 (A Study on the Modal Split Model Using Zonal Data)

  • 류시균;노정현;김지은
    • 대한교통학회지
    • /
    • 제30권1호
    • /
    • pp.113-123
    • /
    • 2012
  • 본 연구에서는 수단별 비용변수를 주요 설명변수로 활용하고 있는 현행 수단분담모형의 문제점으로서 설명변수간 높은 상관관계로 인한 다중공선성 문제와 버스노선의 가변성으로 인한 설명변수의 장래치 추정불가능성 문제를 지적하고 이와 같은 문제점을 극복할 수 있는 방안으로서 존을 설명하는 사회경제적 변수, 토지이용변수, 교통체계변수들을 설명변수로 하는 '존 데이터 기반 수단분담모형'의 활용가능성을 검증하였다. 장래교통수요추정모형으로서 수단분담모형의 설명변수가 갖추어야 할 조건으로서 목표연도별 설명변수의 추정가능성을 설정하고 이러한 조건을 만족하는 존 데이터를 설명변수로 한 수단분담모형을 구축하였으며 수단별 비용변수를 주요 설명변수로 하는 수단분담모형과의 비교를 수행하였다. 추정된 계수에 대한 통계적 유의성 검정에서 비용변수간 높은 상관관계로 인한 다중공선성 문제를 확인할 수 있었으며 적합도 평가(우도비의 비교)를 통해서 존 데이터 기반 수단분담모형이 수단별 비용변수를 설명변수로 한 수단분담모형에 비해서 설명력이 더욱 높다는 사실이 확인되었다.

KTDB 기반 노선배정의 예측오차 원인과 분석결과 해석 (Practical Interpretation and Source of Error in Traffic Assignment Based on Korea Transport Database(KTDB))

  • 김익기
    • 대한교통학회지
    • /
    • 제34권5호
    • /
    • pp.476-488
    • /
    • 2016
  • 이 연구에서는 교통수요예측의 신뢰성에 영향을 미치는 요소와 원인을 검토하였다. 통행의 다양성과 불규칙성, 입력자료 한계, 자료의 집합화, 모형의 단순화가 포괄적 의미에서 교통예측 오차원인이 된다. 또한 불가피하게 존재하는 예측 오차의 이론적 배경을 정확히 규명함으로써 예측결과를 실무적 정책결정에 활용할 시에 합리적 판단을 하는데 도움이 되도록 하였다. 본 연구에서는 특히 노선배정모형의 예측 오차의 요인에 초점을 두고, KTDB 자료기반 분석오차를 6개 항목으로 나누어 설명하였다. 즉, (1) 입력 자료의 오차, (2) 공간 집합화와 네트워크 표현방식에 따른 오차, (3) 교통패턴 변동에 대한 대푯값 설정에 따른 오차, (4) 교통류모형 단순화에 따른 오차, (5) 노선선택 행태 집합화에 따른 오차로 구분하여 설명하였다.

수요의 지역차를 고려한 대체연료 충전소 최적입지선정 : 플로리다 올랜도를 사례로 (Location of Refueling Stations for Geographically Based Alternative-Fuel Vehicle Demand)

  • 김종근
    • 한국경제지리학회지
    • /
    • 제15권1호
    • /
    • pp.95-115
    • /
    • 2012
  • 초기 대체연료차 시장은 고비용으로 인해 수요 잠재력의 지역차가 존재할 것이며 효율적 입지모델은 이러한 지역차를 고려해야 한다. 본 논문은 지역차를 고려한 대체연료차 수요 모델을 기종점 통행량에 통합하는 방법을 제안하며 이를 통해 대체연료차 통행량을 추정한다. 추정된 통행량은 주어진 수의 시설물이 기종점 통행량을 최대로 포괄할 수 있도록 하는 입지모델 (Flow Refueling Location Model)에 입력되어 대체연료 충전소 최적 입지 대안을 제시한다. 사례지역은 플로리다 올랜도 대도시권이며, 수요 추정 및 통행량 통합 시나리오의 결과를 비교 분석한다.

  • PDF

버스 노선망 설계 문제(BTRNDP)의 고찰 (Reviews of Bus Transit Route Network Design Problem)

  • 한종학;이승재;임성수;김종형
    • 대한교통학회지
    • /
    • 제23권3호
    • /
    • pp.35-47
    • /
    • 2005
  • 버스 대중교통은 정해진 노선, 운행시간표에 의해 정류장을 경유하여 운행하므로 버스 노선망 설계 문제(BTRNDP: Bus Transit Route Network Design Problem)는 승용차위주의 가로망 설계 문제와 다른 접근방법이 요구된다. 버스 노선망 설계 문제의 적용모형은 설계방법의 역사적발전과정에 따라 매뉴얼 및 지침, 시장분석기법, 시스템해석모형, 휴리스틱모형, 하이브리드모형, 경험기반모형, 시뮬레이션모형, 수리최적화모형 등 크게 8가지 분류할 수 있다. BTRNDP는 이용자비용과 운영자비용의 조합인 총비용을 최소화하는 목적함수를 획득하기 위한 일련의 현실적 제약조건하에서 버스노선집합과 배차횟수를 결정하는 문제이다. BTRNDP는 조합최적화문제로 일반적 수리최적화문제로 가능해 공간을 정의하는 것이 어렵기 때문에 모든 가능해로 구성된 큰 탐색공간으로부터 최적해를 탐색해야하는 NP-Hard라는 특성을 가진다. BTRNDP의 목적함수는 이용자와 운영자관점을 모두 고려한 다목적함수(Multi-Objective Function)를 이용하며 수요는 고정수요를 이용하였으나 최근에는 가변수요를 고려한 방법론이 연구되고 있다. 해알고리즘으로 최적 버스 노선망을 구성하게 될 모든 가능한 후보노선집합(Candidate Route Set)을 생성하고 노선집합의 최적조합을 찾는 메타휴리스틱(Meta-heuristic) 알고리즘을 이용하여 전역최적 노선집합을 찾는 방법이 적용되고 있다. 최적 버스 노선망의 배차횟수를 결정하기 위해서 대중교통 통행배분모형이 필요한데 BTRNDP에 적용되는 통행배분모형은 다중경로 통행배분모형이 주로 활용되었다. 국내외 BTRNDP를 고찰한 결과 주요 시사점으로는 BTRNDP에서 가장 중요한 고려사항은 세분화된 버스정류장 기반 기종점통행량 구축, 버스 노선망 평가 모형 및 대중교통 통행 배분모형의 개발, 탐색 해알고리즘의 개발 등의 향후 연구내용이 포함될 수 있다.

Monte Carlo 기법을 이용한 교통카드기반 수도권 지하철 통행배정 (Trip Assignment for Transport Card Based Seoul Metropolitan Subway Using Monte Carlo Method)

  • 이미영;남두희
    • 한국ITS학회 논문지
    • /
    • 제22권2호
    • /
    • pp.64-79
    • /
    • 2023
  • 본 연구는 Monte Carlo 기법을 교통카드기반의 수도권 지하철의 통행배정 문제에 적용하는 과정을 검토하였다. 연구는 우선 교통카드에서 역 간 표본의 통행에서 나타나는 통행시간에 대하여 프로빗 모형의 기반이 되는 정규분포의 가정을 적용하였다. Monte Carlo 통행배정은 역 간 통행에 대하여 평균과 표준편차를 산정하고 이를 개별 링크의 차내시간과 환승의 보행 및 배차간격의 가중치로 적용하는 방안을 제안하였다. 샘플 수가 50 이하로 낮게 나타나는 장거리 통행은 유사 통행의 특성을 이전하는 방안으로 적용하였다. 수도권 지하철 네트워크에 대하여 두 가지 방향에서 연구 결과를 검토하였다. 하나는 선릉-성수의 단일 역 간 통행에 대하여 차내시간 및 환승시간에 랜덤샘플링을 적용하는 방안으로 검증하였다. 다음으로 수도권 지하철 전체에 대해서는 역 간 통행 샘플수에 따라서 50 이상은 역 간 정규분포의 가정을 그대로 수용하였다. 샘플수가 50 이하의 장거리 통행은 역 간 최소거리가 122 (Km)에서 표본의 균등성이 확보되는 상황으로 판단하고 이 거리에서 나타나는 카드자료의 역 간 평균과 표준편차를 적용하였다. 사례연구로서 교통카드자료로 구축된 수도권 지하철을 네트워크를 대상으로 단일OD 및 전체 OD의 통행배정의 결과를 도출하였다. 한편 통행에 대한 샘플링이 부족한 상황에서 추가적인 연구가 필요한 것으로 나타났다.

혼잡 교통류 특성을 반영한 동적 O-D 통행량 예측 모형 개발 (Dynamic O-D Trip estimation Using Real-time Traffic Data in congestion)

  • 김용훈;이승재
    • 한국ITS학회 논문지
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 2006
  • 관측교통자료의 수집이 실시간으로 가능해짐으로써 혼잡교통류에 대한 교통류 관련 변수들 간의 전이 과정 등 교통류 특성에 대한 연구가 활발히 진행되고 있다. 또한 관측교통량을 이용한 O-D 추정방법에 대해서도 관심과 연구가 집중되고 있다. 이와 같이 고속도로의 교통류 특성을 보다 명확히 파악하여 동적 O-D를 구축할 수 있다면, 계획, 설계, 운영, 관리 등 다양한 분야에서 효율화를 도모할 수 있다. 하지만 동적 O-D 구축을 위한 기존연구에서는 다음과 같은 문제점이 지적되고 왔다. 첫째로, 동적 교통류 구현을 위해 교통시뮬레이션모형에 사전 O-D가 필요하며 동적 교통류모듈과 동적O-D추정모듈 간 Bi-level Problem으로 접근해야 한다는 점과 둘째로, 혼잡교통류 상황에 대한 특성이 반영되지 못하여 혼잡교통류 상항에 대한 예측력이 떨어지는 문제점이 지적되어 왔다. 본 연구에서는 기존의 문제점인 Bi-level Problem접근 방법을 해결하기 위해, VDS자료를 이용한 차량의 궤적을 추적하여 링크분포비율을 계산함으로써 반복적 수행이 없도록 하였으며 혼잡교통류 상황을 반영할 수 있도록 교통류 예측모듈을 구성하여 동적 O-D 예측모형을 구축하였다. 혼잡교통류에 대한 특성을 반영하기 위해 속도와해현상 및 혼잡 확산등 실제 혼잡교통류에 대한 분석을 통해 속도, 점유율, 교통량 등 교통류 변수들의 관계를 교통상황별로 구분하여 규명하였다. 본 연구에 적용된 모형은 동적 O-D 예측 및 추정모형에서 기존의 Bi-level Problem을 해소할 수 있어 적용이 용이하여 실제 검지기 자료를 활용하여 교통상황을 예측하게 되므로 혼잡교통류에 대한 예측력이 향상되었다고 판단된다.

  • PDF