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1. Introduction

After several decades of discussion and false 
starts, policy makers, automobile manufacturers, 
and fuel providers appear now to be seriously devel-
oping road maps for a transition from a petroleum-
based transportation system to a more sustainable 
system utilizing a lternatives such as biofuels, 
natural gas, electricity, and hydrogen. One of the 
major barriers to the success of alternative-fuel 
vehicles (AFVs) is the lack of infrastructure for 
producing, distributing, and delivering alternative 

fuels (Greene, 1996; Ogden, 1999; NAS, 2004; 
Melendez, 2006b). Given that refueling stations are 
more noticeable to the consumers than other types 
of infrastructure, the availability of alternative-fuel 
stations will accelerate the market acceptance of 
AFVs. 

Based on a survey of the literature and of experts 
involved in alternative fuel deployment, Melen-
dez (2006a) identified the following as four major 
barriers of infrastructure development: lack of 
availability of alternative-fuel stations; the high 
construction costs of alternative-fuel stations; the 
high costs of AFVs; and the relatively short range of 
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AFVs between refueling. The short range of AFVs 
implies that drivers may need to stop multiple times 
in order to finish their trips. In addition, given the 
high costs of AFVs, the consumers’ likelihood to 
purchase AFVs will be geographically uneven.

A facility location model for alternative-fuel 
refueling stations, therefore, should consider both 
AFV’s inherent short range per refueling and the 
spatial variations of consumer demand for AFVs. 
The Flow Refueling Location Model (FRLM) by 
Kuby and Lim (2005) determines the location and 
combination of refueling stations to be built in or-
der to maximize the flows covered by a given num-
ber of facilities, assuming that drivers “stop along 
their way” to refuel. The model takes into account 
the paths of drivers from their origins to destina-
tions (OD), the amount of f lows on the paths, and 
the driving range of vehicles. However, the uneven 
spatial pattern of AFV purchase likelihood is not 
explicitly ref lected on the model. For this end, 
Melendez and Milbrandt (2006a) of the National 
Renewable Energy Laboratory used a Geographic 
Information System (GIS) to model the potential 
hydrogen demand using demographic characteris-
tics and policy variables by census boundary. This 
approach has not been widely used in estimating 
the flow volumes of AFVs for recommending opti-
mal refueling station sites.

This paper integrates geographically uneven de-
mand for AFV into the f low-based location model 
to account for early AFV demand pattern in opti-
mizing a network of AFV refueling stations. Given 
that f low-based location models require data on 
flow volumes of OD pairs, a method to weight the 
f low volumes to ref lect estimated demand is need-
ed. Such weighted flows can be used as input for the 
location models, and as a result refueling service 

can be provided at more convenient locations for 
the likely early AFV drivers. This research proposes 
a method to integrate AFV demand and OD flow 
volume and explores its results.

Next section explains the f low capturing and 
refueling location models. Section 3 reviews previ-
ous approaches to estimating AFV demand using 
GIS. Section 4 describes the data used; discusses a 
modified method to estimate AFV demand; pres-
ents a framework to analyze the sensitivity of the 
estimation model; and proposes a process to inte-
grate estimated demand density and trip flows. The 
results are discussed in Section 5, and it is followed 
by summary and conclusions in Section 6.

2. The Flow Capturing and  

Refueling Location Model

Recently there has been increasing research 
interest in modeling f low-based demand that is 
expressed by flows travelling on paths between OD 
pairs in a traffic network. The f low-intercepting 
location model (FILM) sites facilities within a 
transportation network and explicitly considers 
the f low over the network arcs. Refueling stations 
(Kuby and Lim, 2005), convenience stores, and 
automated teller machines, vehicle inspection sta-
tions (Hodgson et al., 1996), pickup locations for 
grocery purchased online (박종수·이금숙, 2011), 
and billboards (Hodgson and Berman, 1997) are 
examples of f low-dependent facilities. Hodgson 
(1990) and later (independently) Berman, Larson, 
and Fouska (1992) designed the Flow Capturing 
(Intercepting) Location Model (FCLM, FILM) to 
locate these kinds of flow-dependent facilities. The 
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objective of this model is to locate the facilities so 
as to maximize the total f low of customers that are 
“intercepted” during their travel. The basic model 
was extended to provide full coverage (Wang and 
Lin, 2009), to consider relative location of facilities 
along the path (Zeng et al., 2009), or to account 
for congestion or probabilistic flows (Berman et al., 
1995). 

Kuby and Lim (2005) extended the FCLM to 
locate a given number of facilities to maximize the 
number of f lows they can refuel. The new model 
(FRLM: Flow Refueling Location Model) is in-
tended to deal with location of refueling stations for 
range-limited vehicles, with vehicle range being the 
key element. A limited driving range means that a 
single facility anywhere on the path cannot neces-
sarily succeed in refueling a trip on a given shortest 
path—a combination of facilities may be needed. 
Whereas the FCLM counts a f low as captured if a 
facility is located anywhere along the path of the 
flow because one stop will satisfy consumers’ need, 
the FRLM regards a f low as refueled only when a 
satisfactory number of facilities (stations) are spaced 
properly along the path because consumers on the 
path need multiple stops. A mixed-integer linear 
programming (MILP) formulation of the FRLM is 
presented as follows:

Formulation of the FRLM
Maximize Z = ∑

q∈Q
 fqyq� (1)

subject to
∑

h∈Hq
νh≥yq    ∀q∈Q� (2)

xk≥νh    ∀h∈H, k∈Kh� (3)
∑

k∈K
 xk≥p� (4)

xk, νh, yq∈{0,1}  ∀k∈K, h∈H, q∈Q� (5)

where:
Indices

q=�a particular O-D pair (the shortest path for 
each pair)

k=a potential facility location
h=index of combinations of facilities
Sets

Q=set of all O-D pairs
K=set of all potential facility locations
Kh=set of facilities k that are in combination h 
H=set of all potential facility combinations
Hq=�set of facility combinations h that can refuel 

path q 
Parameters

p=the number of facilities to be located
fq=flow between O-D pair q
Decision Variables

xk=1 if there is a facility at location k, 0 if not
yq=1 if fq is captured, 0 otherwise
νh=�1 if all facilities in combination h are open, 0 

otherwise
The objective function (1) locates p facilities to 

maximize the total flow that can be refueled. Con-
straints (2) ensure that for an OD pair q to be open, 
at least one combination of facilities h has to be 
open. Determination of the eligible combination is 
exogenous in that it is generated outside the model 
and depends on the network structure and the 
given vehicle range. An algorithm to generate the 
combination h for each path q and other consider-
ations such as obtaining a tighter set H by removing 
supersets are discussed in Kuby and Lim (2005). 
Constraints (3) bind νh to one only after all the 
facilities in combination h are open. Constraint (4) 
requires exactly p facilities to be open. Constraints 
(5) are integrality constraints. The facility location 
variables xk are defined as binary variables in (5).

To improve the FRLM’s solution quality for a 
given network, Kuby and Lim (2007) proposed 
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methods to add candidate locations along arcs. 
Upchurch et al. (2009) extended the FRLM to 
consider capacity of facilities while Kim and Kuby 
(2012) allowed the drivers to deviate from their 
shortest paths. Given that solving a FRLM problem 
instance to the optimality is computationally chal-
lenging, heuristic algorithms (Lim and Kuby, 2010) 
and a new formulation of the model (Capar et al., 
2010) were also proposed. The FRLM was used to 
provide strategic station locations for in Florida at 
two different scales of analysis: metropolitan Or-
lando and statewide (Kuby et al., 2009). 

3. Geographically Uneven 

Demand for AFV

Previous research, without available data on flow 
volume of AFVs, devised methods to estimate con-
sumer demand for AFVs incorporating a variety of 
assumptions and rules. In terms of their application 
to AFV infrastructure planning, the models can be 
grouped into five categories according to modeling 
method employed: logistic choice models (Greene, 
1996; 2001; Greene and Bowman, 2007; Greene 
et al., 2008; Keles et al., 2008), supply chain mod-
els (Ogden, 2004), system dynamics simulation 
models (Welch 2006; 2007; 2007), GIS approaches 
studies (Kitamura and Sperling, 1987; Melaina, 
2003; Melaina, 2005; Melendez and Milbrandt, 
2005; Ni et al., 2005; Melaina and Bremson, 2006; 
Melendez and Milbrandt, 2006a; Melaina and 
Bremson, 2008), and operation research (OR) facil-
ity location models.

Unlike most models that assume spatially uni-
form distribution of demand, Melendez and Mil-

brandt (2006a) of the National Renewable Energy 
Laboratory (NREL) used GIS to estimate con-
sumer demand for hydrogen (H2) vehicles across 
the US based on geographical distribution. The 
demand was assumed to be proportional to the es-
timated “composite score” of a spatial unit (Figure 
1). To obtain the scores, they first identified key at-
tributes affecting consumer acceptance of hydrogen 
vehicles. Such attributes include income, education 
level, the number of vehicles they own, and policy. 
Each attribute was standardized by assigning a clas-
sification rank score, and weights were assigned to 
each attribute to acquire composite score. The at-
tributes/variables they used and the weights on the 
variables were based on the consensus judgments 
of a panel of experts convened by NREL for this 
purpose. This result of the linearly weighted sum 
was expected to represent relative likelihood of a 
consumer’s purchasing a hydrogen vehicle.

Melendez and Milbrandt (2006)’s method is 
based on a suitability analysis (McHarg, 1969) and 
map algebra (Tomlin, 1990). One of the analytic 
issues in their estimation model is the possibility 
of errors introduced by integrating data that are 
based on different zoning systems such as census 
tracts, traffic analysis zones, and regularly spaced 
polygons. The fundamental reason for this prob-
lem is the fact that continuous space is usually 
represented in discrete forms, which results in loss 
of geographic details (Goodchild, 1979; Murray, 
2003). As a matter of fact, they converted nation-
wide census tracts into a raster format by applying a 
20 by 20 mile grid, and thus their approach is prone 
to the modifiable areal unit problem (Openshaw 
and Taylor, 1981). The implicit assumption in doing 
so is that households are evenly distributed within 
each grid, which may not be the case considering 
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the real world population distribution and the rela-
tively large size of the grid. Given that any zoning 
system cannot contain all the details, a method that 
reduces or eliminates errors in integrating attributes 
from different zoning systems is required. Good-
child and Lam (1980) referred to this as the areal 
interpolation problem and suggested a straightfor-
ward method. Furthermore, Goodchild, Anselin, 
and Deichmann (1993) discussed and suggested a 
framework that utilizes complementary informa-
tion to derive control zones where a uniform dis-
tribution of source zone attributes is assumed. Gan 
(1994) proposed that network density can be used 

as the complementary data. In this paper, we sug-
gest that using the smallest unit as consistently as 
possible in a vector format and apply an areal inter-
polation method if needed.

4. Methods

1) Data

This research used real-world road network and 
census data1) of year 2000 for the Orlando metro-

Figure 1. An Example of Geographically Uneven Demand for Alternative Fuel
Source: Melendez and Milbrandt. 2006. 16
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politan area (Lines et al., 2007; Kuby et al., 2009). 
Figure 2 shows the study area. The data used for 
building the network for Orlando and estimating 
the alternative-fuel demand-weighted f lows were 
collected from many sources including Florida 
DOT, US Census Bureau, and Department of 
Energy, and ESRI Inc. (Table 1). The raw street net-
work data were investigated to ensure no topologi-
cal error exists. Traffic Analysis Zones (TAZs) were 
aggregated into 102 areas and a single OD point 
was selected to represent each TAZ. The OD points 
were located at intersections of major roads or 
traffic-inducing business centers. Least-time paths 
for all OD pairs were generated using the posted 
speed limits of the network arcs as costs. TAZ trip 
flows obtained from FDOT travel demand models 
were aggregated and assigned to the least-cost paths 
assuming traffic f lows occur on the shortest paths. 
Selection of the TAZs to be merged and location of 
OD centers involved extensive discussion among 
participant scientists of the FHI project and itera-
tive calibration of data (Kuby et al., 2009). Demo-
graphic data of year 2000 collected by census block 
were obtained from US Bureau of Census.

2) �Estimation of Alternative Fuel  
Demand

Alternative-fuel demand was estimated using 
geographic information system and multi attribute 
decision making analysis based on NREL’s ap-
proach. But it was modified for f low-based mod-
els. Adapted and NREL’s original GIS model are 
shown in Table 2. Specific differences are detailed 
as below.

The flow-based location models require flow vol-
ume between OD pairs, but the NREL method was 
developed to estimate the total demand in a zone, 
and therefore the estimates need to be revised on 
a per capita basis so that they can be multiplied by 
the total number of trips between two zones. For 
example, an extensive attribute “total number of 
people with bachelor’s degree” was changed to be 
an intensive attribute “percentage of people with 
bachelor’s degree.” Some of NREL’s attributes were 
state-level (state incentives, zero-emission vehicle 
mandates, and hybrid registration) or not applica-
ble to state of Florida (there are no counties of non-
attainment status for air quality). These attributes 
were not used and their weights were re-assigned to 

Table 1.  Spatial Data Layers

Layer Description

OD Centers Aggregated TAZ centers

Junctions Defined by analysts at all intersections of arcs 

Candidate Facilities Combines the OD and junctions layer 

Road Network Florida Department of Transportation layers. Aggregated. 

Shortest Path Routes 
Least-cost paths were generated based on Dijkstra’s algorithm. TAZs are the input 
nodes and maximum speed of arc is the cost.

Demographic Data 2000 US Census data collected by census tracts
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other attributes. 
Equal-interval classification was used instead of 

natural break method in assigning a standardized 
rank score to each census tract. The range of values 
was the maximum and minimum of all the tracts 
in Florida rather than those in Orlando area. The 
range was divided equally into seven classes. Figure 
3 shows spatial distribution of the rank scores of 
each attribute.

Once the rank score for each attribute was ob-
tained, it was multiplied by the weight assigned 
for each attribute. The base case weighting scheme 
is shown in Table 2. Weighted rank scores were 

summed for all attributes to obtain a composite 
rank score for each tract. The next two sub-sections 
present details of weighting scenarios and aggrega-
tion method.

3) �Sensitivity Analysis on Demand  
Estimation Model

Sensitivity analyses were conducted to explore 
the sensitivity of AFV demand estimates to changes 
in attribute weighting scheme. Five scenarios—
base case, equal weighting, policy emphasis, demo-
graphic emphasis, and no policy—were created and 

Figure 2. Orlando Metropolitan Area
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Figure 3. Spatial Distribution of Rank Scores

Table 2. Proposed Attributes Affecting AFV Demand and Rank Score Scheme

NREL Data Layer 
(weight - %)

NREL Classes
NREL 
Rank 
Score

Data Layer (base case 
weight - %)

Adapted Classes
Rank 
Score

Median 
Household

Income
(High - 15%)

54,955–86,901 7

Median 
Household

Income
(High - 23%)

172,515 – 200,001 7
43,109–54,954 6 145,029 – 172,514 6
36,152–43,108 5 117,542 – 145,028 5
30,673–36,151 4 90,056 – 117,541 4
24,748–30,672 3 62,569 – 90,055 3
15,405–24,747 2 35,083 – 62,568 2

0–15,404 1 0– 35,082 1

Number of
People with Bachelor’s 

Degrees
(Medium - 10%)

943,877–1,770,650 7

Percentage of 
People with Bachelor’s 

Degrees
(Medium - 18%)

75.7 – 100 7
415,521–943,876 7 63.1 – 75.6 6
228,465–415,520 6 50.5 – 63.0 5
123,779–228,464 5 38.0 – 50.4 4
51,563–123,778 4 25.5 – 37.9 3
14,107–51,562 3 12.84 – 25.4 2

0–14,106 2 0 – 12.83 1
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NREL Data Layer 
(weight - %)

NREL Classes
NREL 
Rank 
Score

Data Layer (base case 
weight - %)

Adapted Classes
Rank 
Score

Number of Workers 
Age 16+ who 

commute more than 
20 minutes

(Medium - 10%)

908,659–1,572,668 7

Percentage of Workers 
age 16+ who commute 
more than 20 minutes

(Medium - 18%)

78.6 – 100 7

418,740–908,658 7 66.3 – 78.5 6

219,920–418,739 6 53.9 –66.2 5

109,577–219,919 5 41.5 –53.8 4

47,249–109,576 4 29.1 –41.4 3

12,529–47,248 3 16.8 –29.0 2

0–12,528 2 0 – 16.7 1

Number of 
Households with 2+ 

Vehicles
(High - 15%)

179,419–312,470 7

Percentage of House-
holds with 2+ Vehicles

(High - 23%)

80.8 – 100 7

312,471–516,079 7 68.0 – 80.7 6

118,941–179,418 6 55.2 – 67.9 5

68,543–118,940 5 42.4 – 55.1 4

30,240–68,542 4 29.6 – 42.3 3

8,065–30,239 3 16.6 – 29.5 2

0–8,064 2 0 – 16.5 1

Clean Cities 
Coalitions, by County

(Medium - 10%)

Yes
No

7
1

Clean Cities 
Coalitions, by County

(Medium - 18%)

Yes
No

7
1

Air Quality
(Medium - 10%)

Severe 7

Not applicable
Florida has no counties in non-
attainment status for air quality

Moderate 6

Marginal 5

None 1

State Incentives
(Medium - 10%)

Yes
None

5-7
1

Not applicable
(State level attribute, Not used 

because it is the same for all 
TAZs)

ZEV Sales Mandate
(Medium - 10%)

Yes
No

7
1

Not applicable
(State level attribute, Not used 

because it is the same for all 
TAZs)

Registered Hybrid 
Vehicles, by State
(Medium - 10%)

1,551-2,875 7

Not applicable
(State level attribute, Not used 

because it is the same for all 
TAZs)

686-1,550 6

372-685 5

169-371 4

68-168 3

12-67 2
0-11 1

Note: Modified from Melendez and Milbrandt (2006)
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Table 3 shows weighting scheme for each scenario. 
Spatial clusters of the resulting rank scores were 
visualized using Local Moran’s I statistics. The 
percentage of population falling in each demand 
category was also identified.

4) Aggregation of Demand Density 

The spatial units of original data sources were 
different, and thus areal interpolation was needed 
to aggregate composite rank scores of tracts to 
TAZ boundary. In doing so, population density 
was used as intermediate control value. Aggrega-
tion of demand density calculated on each tract 
into TAZ needed special attention in choosing the 
interpolation method. The census zoning system 
is different than the TAZ zoning system. The de-
lineation of TAZ boundaries is not only based on 
the census boundaries but also on a transportation 
network. The cardinality of the relationship be-
tween TAZ and tracts is not one-to-one or one-to-
many. It is many-to-many cardinality; most tracts 
fall in one TAZ, but in some cases one tract may 
fall in multiple TAZs. Most tracts fall in only one 

TAZ, thus aggregation for such tracts is relatively 
easier; each demand density can be weighted by the 
tract’s weight variable and then the average of all 
the weighted values from the tracts is assigned to 
the covering TAZ. The weight variable could be a 
constant, population, area, or any variable that can 
represent the relative importance of each tract. We 
think population serves better than area as a weight 
variable for demand density aggregation. 

5) �Weighting Flow Volume by 
Alternative Fuel Demand

The next step was an integration of compos-
ite rank scores with the trips between an origin-
destination pair to obtain alternative-fuel demand 
weighted trips. Rank scores that were assigned 
for a pair of origin and destination were averaged. 
The average rank score for an origin-destination 
pair needed to be converted to a weighting factor 
between 0 and 1 using a transformation function 
(Figure 3). The resulting value (AFV adoption rate) 
was a multiplier to the trips to acquire alternative 
fuel demand weighted trips. Two transformation 

Table 3. Five Scenarios and Weighting Scheme

Base Case (%) Equal Weighting (%) Demographic Emphasis (%) Policy Emphasis (%) No Policy (%)

VEHa 23 20 21 23 25

INCb 23 20 21 18 25

EDUc 18 20 21 18 25

COMMd 18 20 21 18 25

POLe 18 20 16 23  0

a Percentage of Households with 2+ Vehicles
b Median House-hold Income
c Percent-age of people with bachelor’s degrees
d Percentage of workers age 16+ who commute more than 20 minutes
e Clean Cities Coalitions, by County
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functions (linear and sigmoid) were employed and 
the resulting link f low patterns were compared. 
Note, however, AFV adoption rate should be inter-
preted in relative terms. For instance, if an OD pair 
A that has an average composite score of 5, which 
translates to 0.67 by the linear transformation 
function. There may be another OD pair B with the 
composite score of 2, and thus 0.167 for AFV adop-
tion rate. In this case, we are estimating that four 
times as many customers are likely to adopt AFV 
for trips on A than for the trips on B, but we do not 

claim to estimate that 67% or 16.7% of drivers will 
adopt AFVs.

6) �Solving the FRLM with AFV-Demand  
Weighted Scenarios

For each demand density score from five attribute 
weighting scenarios, two sets of weighted trip flows 
(linearly weighted and sigmoid function weighted) 
for each OD pair were assigned to its shortest time 
path. The FRLM was solved using greedy algo-

Figure 3. Transformation Function Curves

Table 4. Example of Demand-Weighted Flows

ID O D
OD

TRIPS

Sigmoid Function Weighted Trips Linearly Weighted Trips

BCa NPb EWc PEd DEe BCa NPb EWc PEd DEe

1 1 2 1804 1533 673 1702 1924 879 1802 1517 1850 1915 1599

2 1 3 957 777 312 856 990 427 956 795 978 1017 844
3 1 4 597 432 161 486 573 234 590 485 606 631 521
4 1 5 1359 1120 463 1244 1423 626 1366 1141 1401 1453 1209
5 1 6 454 368 154 414 471 208 452 379 465 482 402

a Base Case	 b No Policy	 c Equal Weighting
d Policy Emphasis	 e Demographic Emphasis
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rithm with substitution (1 substituting iteration) at 
a vehicle’s range of 100 miles for p = 10 and p = 20 
using the demand-weighted flows. Therefore, there 
were 10 demand-weighted f lows (5 scenarios x 2 
transformation functions) as input for the FRLM. 
Table 4 is an example of the weighted flows.

5. Analysis

1) �Spatial and Probability Distribution 
of AFV Demand Estimate

Figure 4 shows the maps of composite rank scores 
from each scenario. In addition, breakdown of 
population by each demand score range is shown 
in Figure 5. The policy emphasis scenario resulted 
in more tracts with high rank scores. Specifically, 
about 49% of population falls in the tracts with 
high (> 4.6) scores. This contrasts to no policy 
scenario where the similar percentage of popula-
tion falls in fair to high score ranges. This may be 
interpreted that policy could push up consumers 
to the next higher class in terms of demand density 
category. 

Probability distribution of all scenarios had posi-
tive skewness (0.12 ~ 0.16). This suggests there are a 
small number of tracts with high rank scores, which 
will be good target areas. The composite rank scores 
showed high correlation (> 0.998) among different 
weighting scenarios, and thus to identify clusters 
this research mapped Local Moran’s I of composite 
ranks scores (Figure 6). The LISA maps, for which 
a queen-type contiguity weight matrix was used for 
modeling neighbors, show that high- and low-value 
cluster pattern look about the same at all weighting 

scenarios. Three predominant areas were identified 
as high-value clusters: north, northeast, and south-
west of Orlando metropolitan. 

2) �Effects of AFV Demand Estimate 
on Locating Refueling Facilities

The dispersion of probability distribution of AFV 
adoption rate for 104 TAZs in Orlando area was 
shown in Table 5. The most dispersed adoption 
rate was observed when sigmoid function was used 
in transforming composite scores of no policy sce-
nario (CV: 0.696), whereas the least dispersed one 
was linearly transformed scores of policy emphasis 
scenario (CV: 0.115). The former can be interpreted 
as a situation where market mostly drives AFV ac-
ceptance, and the latter simulates the case when 
the policy is actively involved in transitioning to an 
AFV transportation system. 

Using the above two sets, demand-weighted 
f lows were computed as inputs for the FRLM, 
and the problem instances were solved using the 
greedy algorithm with one substitution for p = 10 
and p = 20. The solutions for linearly transformed 
scores of policy emphasis scenario (LWT-P) were 
the same as those for non-weighted flows (TRIPS), 
but with a little less coverage (Table 6). However, 
transformation of no policy scenario scores by a 
sigmoid function (SWT-NP) resulted in higher 
coverage (0.01~4.44%) than TRIPS and different 
facility locations (Table 6 and Figure 7). Note that 
total f lows to cover were reduced for LWT-P and 
SWT-NP as a result of AFV demand weighting 
from 146,694,202 to 91,337,483 and 46,109,611 
respectively. Therefore, the actual flows that can be 
refueled by the solution for SWT-NP scenario are 
generally less than LWT-P solution. For example, 
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the 10 selected stations for SWT-NP scenario cover 
more percentage (54.92%) of the total weighted 
flows than those for LWT-P do (54.32%). incur 

But the actual number of trips that are refuelable 
by the former (253,216) is less than the weighted-
trip number refuelable by the latter (496,179). This 

Figure 4. Composite Scores from Different Scenarios
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Figure 5. Breakdown of Population by Demand Score Range

Figure 6. LISA Cluster Maps of Demand Scores
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Table 5. Dispersion of AFV Adoption Rates

Sigmoid Function Transformation Linear Transformation

BCa NPb EWc PEd DEe BCa NPb EWc PEd DEe

Mean 0.550 0.324 0.589 0.653 0.360 0.590 0.504 0.603 0.626 0.523

Standard 
Deviation

0.214 0.225 0.203 0.192 0.193 0.076 0.091 0.073 0.072 0.069

Coefficient of 
Variance

0.389 0.696 0.345 0.295 0.535 0.129 0.181 0.121 0.115 0.132

a Base Case
b No Policy
c Equal Weighting
d Policy Emphasis
e Demographic Emphasis

Table 6. Effect of AFV-Demand Weighting on Coverage

p
Percentage of Coverage: 

Non-Weighted Flows

Coverage Gain of Weighted Flows (% of Non-Weighted Flows Covered)

No Policy / Sigmoid Function
Transformation

Policy Emphasis /
Linear Transformation

1 14.23 -26.99 -5.62

2 21.12 -10.40 -4.23

3 26.53 -1.16 -3.06

4 31.45 1.93 -1.55

5 36.14 4.33 -0.91

6 40.50 4.44 0.04

7 44.70 3.63 -0.37

8 48.19 2.26 -0.09

9 51.62 1.14 -0.39

10 54.59 0.60 -0.49

11 57.52 0.01 -0.56

12 60.02 0.16 -0.48

13 62.21 0.35 -0.59

14 64.41 0.50 -0.79

15 66.54 0.43 -0.91

16 68.60 0.46 -0.93

17 70.38 0.79 -0.90

18 72.09 1.13 -0.78

19 73.72 1.34 -0.56

20 75.46 1.16 -0.51
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Figure 7. Different Selection of Facilities by the FRLM with AFV demand
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should be interpreted that the application of a sig-
moid function resulted in more reduction of total 
weighted f lows than a linear function did. Given 
that the sigmoid function sets more penalties on the 
OD pairs where their average rank score is less than 
4 (See Figure 3) and such penalties get comple-
mented by putting more weight on the OD pairs 
with higher (>4) average rank score, this conforms 
to the distribution of AFV adoption rates shown in 
Table 5. 

Previous research demonstrated that the optimal 
locations chosen by the FRLM are stable at the 
metropolitan scale (Upchurch and Kuby, 2010; 
Zeng et al., 2010). Therefore, any changes in the 
solution imply that there are significant changes in 
the traffic f low patterns. Regarding facility loca-
tions chosen to serve demand-weighted f lows, the 
six initial facilities were selected at the same loca-
tions even though there was slight difference in 
the order of stations added. The 10 facilities from 
TRIPS and LWT-P located mainly to cover high-
volume north-south f lows and to serve some other 
high-volume f lows on southwest and northeast 
regions. Both TRIPS and LWT-P selected 11th 
- 20th stations that can cover east-west f lows. 
They selected stations for further southwest and 
northeast regions as well so that drivers could drive 
further to that direction. We observe different pat-
tern of facilities selected by SWT-NP. When SWT-
NP selected 10 facilities, it replaced two stations in 
south Orlando in areas with demand scores of 2.75 
and 3 with the ones in west and east areas having 
4.5 and 5.5 for the demand scores to obtain higher 
objective value. For 11th -20th stations, it seemed to 
locate stations further to northeast, northwest, and 
southwest of Orlando, where high demand clusters 
exist. This suggests that optimal solutions for maxi-

mizing SWT-NP have reflected the modified struc-
ture of alternative-fuel demand, which had more 
dispersed distribution of AFV-demand scores than 
LWT-P or TRIPS.

6. Conclusions

The anxiety of potential AFV drivers that their 
trips may not be completed because of AFV’s short 
driving range per refueling must be resolved by 
efficiently placing necessary multiple facilities to 
enable longer trips. In addition, the geographically 
uneven likelihood of purchasing AFVs also needs 
to be considered to maximize the impact of initial 
investments both from government and private 
sectors. Current path-based network design and 
location model considers AFV’s short range but 
spatial variations of consumer demand for AFVs 
have not been explicitly incorporated. This study, 
therefore, considered uneven distribution of AFV 
demand that is expected in the initial phases of AF 
station development. More specifically, this pa-
per proposed a method that incorporates NREL’s 
raster-based AFV demand estimation model into 
the path-based FRLM, and it was applied to the 
Orlando metropolitan data. The method has inte-
grated enhanced procedures to provide more reality 
to the network design and facility location model.

Several important findings of this study can be 
highlighted. The most significant one is that the 
existence of supporting policy has a substantial 
impact on the distribution of AFV demand and as 
a result on the locations and performance of the 
optimal facilities. An active involvement of policy 
can push up the likelihood of consumers purchas-
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ing the AFVs, as the spatial pattern of estimated 
demand and population composition showed. Con-
sequently, the optimal facilities provided higher 
coverage of demand, measured by the number of 
trips, when supporting policy was expected to exist. 
This finding is consistent with previous research on 
AFV demand (Melendez and Milbrandt, 2006b; 
Melaina, 2007; Greene et al., 2008) where the 
importance of supporting policy was stressed. A 
second major finding is that the scenarios analysis 
is essential in identifying robust solutions that are 
optimal regardless of variations in the future sce-
narios and in detecting critical conditions that may 
not break through the barriers of AFV acceptance. 
The optimal locations chosen by the FRLM are 
generally stable as the infrastructure is built out and 
the number of stations increases. Previous research 
demonstrated that the optimal locations chosen 
by the FRLM are stable at the metropolitan scale 
(Upchurch and Kuby, 2010; Zeng et al., 2010). 
This research, however, showed that they can shift 
toward areas with high AFV purchase potentials 
when there is no supporting policy. Even though 
the effect on station locations seemed minor at the 
first glance, considering the FRLM’s property of 
providing stable solutions even with removal of OD 
pairs and network arcs (Zeng et al., 2010), such 
shift is critically important for decision makers. De-
cision makers such as government agency or private 
fuel providers need to find a robust set of stations 
that can remain good even after more stations are 
added later as the infrastructure development phase 
progresses. In this sense, the FRLM provides stale 
solutions for many of the scenarios. On the other 
hand, they also want to know the critical condi-
tions that change the optimal sites and they will put 
their efforts to find a solution to avoid such adverse 

conditions. The scenario analysis, thus, provides the 
decision makers with important information. 

Even though this research’s approach is straight-
forward and has the capability of providing en-
hanced representation of early consumer demand, 
the model’s inherent uncertainties in the data, 
attribute ranking scheme, or scenario parameters 
requests further elaboration in order to apply it to 
real world. For this end, without empirical data to 
verify or evaluate the model’s results, it would be 
extremely valuable for the alternative-fuel refueling 
network planners to have an explorative framework 
that integrates the AFV estimation model and loca-
tion model where various scenarios can be gener-
ated and alternatives are efficiently compared. 

Notes

1) �Originally these data were collected as a part of DOE fund-

ed project (Florida Hydrogen Initiative Project).
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수요의 지역차를 고려한 대체연료 충전소 최적입지선정:  

플로리다 올랜도를 사례로

김종근*

요약 : 초기 대체연료차 시장은 고비용으로 인해 수요 잠재력의 지역차가 존재할 것이며 효율적 입지모델은 이러한 지역차를 고려해야 

한다. 본 논문은 지역차를 고려한 대체연료차 수요 모델을 기종점 통행량에 통합하는 방법을 제안하며 이를 통해 대체연료차 통행량을 

추정한다. 추정된 통행량은 주어진 수의 시설물이 기종점 통행량을 최대로 포괄할 수 있도록 하는 입지모델 (Flow Refueling Location 

Model)에 입력되어 대체연료 충전소 최적 입지 대안을 제시한다. 사례지역은 플로리다 올랜도 대도시권이며, 수요 추정 및 통행량 통합 

시나리오의 결과를 비교 분석한다.

주요어 : 수요의 지역차, 대체연료차, 충전소, 최적입지, 통행량, FRLM
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