• Title/Summary/Keyword: OC (Organic Carbon)

Search Result 131, Processing Time 0.027 seconds

Seasonal Variations of OC and EC in PM10, PM2.5 and PM1.0 at Gosan Superstation on Jeju Island (제주도 고산 PM10, PM2.5, PM1.0 중 OC와 EC의 계절별 변화 특성)

  • Lim, Sae-Hee;Lee, Mee-Hye;Kang, Kyeong-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.567-580
    • /
    • 2010
  • Organic carbon (OC) and elemental carbon (EC) concentrations were determined for $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$ aerosols particles collected at Gosan Superstation on Jeju Island from August 2007 to September 2008. Aerosols were collected on quartz filters for 24 hours and then OC and EC were analyzed by TOR/IMPROVED method. Mean concentrations of OC and EC were $4.66\;{\mu}g/m^3$ and $1.69\;{\mu}g/m^3$ for $PM_{10}$, $3.95\;{\mu}g/m^3$ and $1.69\;{\mu}g/m^3$ for $PM_{2.5}$, and $3.16\;{\mu}g/m^3$ and $1.42\;{\mu}g/m^3$ for $PM_{1.0}$, respectively. The concentrations of OC and EC comprised 16.4% and 6.0% of $PM_{10}$, 22.9% and 9.8% of $PM_{2.5}$, and 23.0% and 10.0% of $PM_{1.0}$. OC and EC showed a clear seasonal variation with the highest in winter and the lowest in summer. The correlations between the two were also the best during the winter ($R^2$=0.87, 0.94, and 0.95 for $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$). The ratio of OC/EC exhibited the maximum (7.24) during an Asian dust event due to an increase of OC, which was possibly derived from soil. The mass fraction of both OC and EC was the highest in fall. When OC and EC concentrations were highly elevated, EC1 (the first EC fraction determined at $550^{\circ}C$) and pyrolyzed OC (POC) were dominant subcomponents in winter and OC3 (the third OC fraction determined at $450^{\circ}C$) and POC in spring.

Study on the Variation of Dielectronic Constant for an Organic Insulator Film (유기물 절연 박막에 대한 유전상수의 변화에 대한 연구)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.341-345
    • /
    • 2008
  • The SiOC film of carbon centered system was prepared using bistrimethylsilylmethane and oxygen mixed precursor by the chemical vapor deposition. The chemical properties of the SiOC film were analyzed by the contact anlge and FTIR spectra. The dielectric constant of the deposited films decreased after annealing process, and the correlation between the increasing the BTMSM/$O_2$ flow rate ratio and the dielectric constant did not exist. However, the trend of increasing or decreasing of the dielectric constant repeated and there is the correlation ship between the dielectric constant and the Si-O-C bond in the range of $950{\sim}1200\;cm^{-1}$. The dielectric constant decreased between samples with the chemical shift. The lowest dielectric constant was 1.65 at the sample, which was observed the chemical shift.

Dependence of Total and Carbonaceous Aerosol Concentrations on Transport Pathways in Seoul, Korea (공기 궤 유입경로에 따른 한반도 서울 상공의 전체 및 유기 에어로졸 농도 변화 분석)

  • Jeong, Ukkeo;Kim, Jhoon;Kim, Young J.;Jung, Jinsang
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.141-148
    • /
    • 2015
  • Recently increased anthropogenic aerosols change the radiative energy balance and affect human life. The management of air quality requires monitoring both the local emissions and transported pollutants. In order to estimate the quantitative contribution of long-range transport from remote sources on aerosol concentrations in Seoul, the airmasses were classified into five types with respect to their pathways. When airmass came from west over strong emission regions in China, high concentrations of $PM_{10}$, $PM_{2.5}$, black carbon (BC), organic carbon (OC), and elemental carbon (EC) were found, even higher than those for the stagnated airmass. High OC concentrations were found when airmass came from north while BC, EC, and $PM_{2.5}$ concentrations were lower than those of the stagnated airmasses. During dust events, the $PM_{2.5}$ and $PM_{10}$ concentrations increased significantly while carbonaceous aerosol concentrations did not increased. The temporal variations of aerosol concentrations in Seoul were affected by the seasonal variations of airmass pathways. The high $PM_{2.5}$ concentrations over $100{\mu}g\;m^{-3}$ appeared most frequently when the airmasses came from west.

Pollution characteristics of PM2.5 observed during January 2018 in Gwangju (광주 지역에서 2018년 1월 측정한 초미세먼지의 오염 특성)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Jang, Yu Woon;Lim, Yong Jae;Ghim, Young Sung
    • Particle and aerosol research
    • /
    • v.15 no.3
    • /
    • pp.91-104
    • /
    • 2019
  • In this study, hourly measurements of $PM_{2.5}$ and its major chemical constituents such as organic and elemental carbon (OC and EC), and ionic species were made between January 15 and February 10, 2018 at the air pollution intensive monitering station in Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were collected at the same site and analyzed for OC, EC, water-soluble OC (WSOC), humic-like substance (HULIS), and ionic species. Over the whole study period, the organic aerosols (=$1.6{\times}OC$) and $NO_3{^-}$ concentrations contributed 26.6% and 21.0% to $PM_{2.5}$, respectively. OC and EC concentrations were mainly attributed to traffic emissions with some contribution from biomass burning emissions. Moreover, strong correlations of OC with WSOC, HULIS, and $NO_3{^-}$ suggest that some of the organic aerosols were likely formed through atmospheric oxidation processes of hydrocarbon compounds from traffic emissions. For the period between January 18 and 22 when $PM_{2.5}$ pollution episode occurred, concentrations of three secondary ionic species ($=SO{_4}^{2-}+NO_3{^-}+NH_4{^+}$) and organic matter contributed on average 50.8 and 20.1% of $PM_{2.5}$, respectively, with the highest contribution from $NO_3{^-}$. Synoptic charts, air mass backward trajectories, and local meteorological conditions supported that high $PM_{2.5}$ pollution was resulted from long-range transport of haze particles lingering over northeastern China, accumulation of local emissions, and local production of secondary aerosols. During the $PM_{2.5}$ pollution episode, enhanced $SO{_4}^{2-}$ was more due to the long-range transport of aerosol particles from China rather than local secondary production from $SO_2$. Increasing rate in $NO_3{^-}$ was substantially greater than $NO_2$ and $SO{_4}^{2-}$ increasing rates, suggesting that the increased concentration of $NO_3{^-}$ during the pollution episode was attributed to enhanced formation of local $NO_3{^-}$ through heterogenous reactions of $NO_2$, rather than impact by long-range transportation from China.

Concentration Characteristics of Elemental and Organic Carbons During Asian Dust Episode and Non-Episode (황사시와 비황사시 대기 입자상 탄소성분의 농도 특성)

  • Hwang, Kyung-Chul;Cho, Ki-Chul;Shin, Eun-Sang
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.102-111
    • /
    • 2009
  • In this study, Particulate carbon were determined from 1990 to 1995. The annual variation were investigated. The sampling was carried out using high volume air sampler. Average concentrations of EC and OC during the yellow sand event were $25.70{\mu}g/m^3$ and $13.91{\mu}g/m^3$, respectively, $22.10{\mu}g/m^3$ and $10.33{\mu}g/m^3$ during the non-yellow sand event. TC concentration of TSP were 10.7% during the yellow sand event and 20.6% during the non-yellow sand event. Average concentration rate of EC and OC of TC were 64.9% and 35.1%, respectively during the yellow sand event, 67.6% and 32.4% during the non-yellow sand event.

Chemical Properties and Source Profiles of Particulate Matter Collected on an Underground Subway Platform

  • Ma, Chang-Jin;Lee, Kyoung-Bin;Kim, Shin-Do;Sera, Koichiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • Under a very tough situation that there has been increasing concern to the air quality in underground subway spaces, this study set sights on the thorough estimation of the chemical properties and source apportionment of particulate matter (PM) collected on an underground subway platform by a cooperative approach of semi-bulk and single particle analyses. The size-resolved PMs were intensively collected on the platform of Miasageori station on the Seoul Subway Line-4, and then, they were semibulkily analyzed by a PIXE and the TOR$^{(R)}$ method, and individually analyzed by a SEM-EDX. Overwhelmingly enriched iron was a notable feature of elemental concentration of $PM_{2.5}$. Source classification of iron in $PM_{10-2.5}$ and $PM_{2.5}$ performed along with their elemental concentrations, indicates that the railway originated iron accounts for 95.71% and 66.39% of total iron in $PM_{10-2.5}$ and $PM_{2.5}$, respectively. Via a stoichiometric categorization, $Fe_2O_3$, $CaAl_2Si_2O_8$, $Al_2O_3$, and $CaCO_3$ show more than 85% abundance ratio in individual coarse particles. The result of theoretical estimation of the subway derived organic carbon ($OC_{Subway}$) suggests that $OC_{Subway}$ in $PM_1$ and $PM_{2.5-1}$ account for 75.86% and 51.88% of total organic carbon, respectively.

A Study on the Source Profile Development for Fine Particles (PM2.5) Emitted from Biomass Burning (Biomass-burning에서 배출되는 미세입자 (PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구)

  • Kang, Byung-Wook;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.384-395
    • /
    • 2012
  • This study was performed to develop the source profiles for fine particles ($PM_{2.5}$) emitted from the biomass burning. The multi-method research strategy included a usage of combustion devices such as field burning, fireplace, and residential wood burning to burn rice straw, fallen leaves, pine tree, and oak tree. The data were collected from multiple sources and measured water-soluble ions, elements, elemental carbon (EC), and organic carbon (OC). From this study, it turned out that OC (34~67%) and EC (1.2~39%) are the major components emitted from biomass burning. In the case of burning rice straw at field burning, OC (66.6%) was the most abundant species, followed by EC (4.3%), $Cl^-$ (3.6%), Cl (2.1%), and $SO^{2-}_4$(1.9%). Burning rice straw, fallen leaves, pine tree, and oak tree at fireplace, the amount of OC was 58.5%, 52.7%, 52.5%, and 61.2%, and that of EC was 1.2%, 18.4%, 36.5%, and 2.7%, respectively. The ratio of OC for the burning of pine tree and oak tree from the residential wood burning device was 56.9% and 34.3%, and that of EC was 25% and 38.6%, respectively. Applying the measured data with respect to the proportion of components emitted from biomass burning to reference model, it turned out that self-diagnosed result was appropriate level, and the result based on the model is in highly corresponding to actual timing of biomass burning.

Fecal Contamination Associated with Local Reclamation Activity in the Han River Estuary

  • Hyun, Jung-Ho;Ju, Se-Jong;Harvey, H.R.
    • Journal of the korean society of oceanography
    • /
    • v.37 no.4
    • /
    • pp.224-231
    • /
    • 2002
  • Vertical distributions of coprostanol (5$\beta$-cholestan-3$\beta$-ol) and other sterols were investigated in the intertidal sediment of Shinbul island in the Han River estuary to estimate the short-term variations of fecal contamination in association with reclamation activity which caused a construction of tidal barrier and emigration of residents from the island. Quantitative contributions of coprostanol in total sterol (9.87-15.84%) and in total organic carbon (82.0-157.7 $\mu\textrm{g}$ g$^{-1}$ OC) implied that a substantial amount of organic matter associated with fecal pollutants was introduced into the sediment. The highest contribution of coprostanol to organic carbon that was observed between 0.3-0.9 cm depth seemed to be associated with increased human activities for the reclamation project of the island. The ratio of coprostanol to organic carbon decreased within 0.3 cm depth, which indicated decreased fecal contamination after the emigration of residents from the island. The results suggested that measurement of coprostanol could relevantly reflect short-term fluctuation of fecal contamination in the sediment of the Han River estuary.

Chemical Characteristics and Formation Pathways of Humic Like Substances (HULIS) in PM2.5 in an Urban Area (도시지역 PM2.5의 HULIS 화학 특성 및 발생 과정 조사)

  • Son, Se-Chang;Bae, Min-Suk;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.239-254
    • /
    • 2015
  • Little information on HUmic-Like Substances (HULIS) in ambient particulate matter has been reported yet in Korea. HULIS makes up a significant fraction of the water-soluble organic mass in the atmospheric aerosols and influence their water uptake properties. In this study 24-hr $PM_{2.5}$ samples were collected between December 2013 and October 2014 at an urban site in Gwangju and analyzed for organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), HULIS, and ionic species, to investigate possible sources and formation processes of HULIS. HULIS was separated using solid phase extraction method and quantified by total organic carbon analyzer. During the study period, HULIS concentration ranged from 0.19 to $5.65{\mu}gC/m^3$ with an average of $1.83{\pm}1.22{\mu}gC/m^3$, accounting for on average 45% of the WSOC (12~ 73%), with higher in cold season than in warm season. Strong correlation of WSOC with HULIS ($R^2=0.91$) indicates their similar chemical characteristics. On the basis of the relationships between HULIS and a variety of chemical species (EC, $K^+$, $NO_3{^-}$, $SO_4{^{2-}}$, and oxalate), it was postulated that HULIS observed during summer and winter were likely attributed to secondary formation and primary emissions from biomass burning (BB) and traffics. Stronger correlation of HULIS with $K^+$, which is a BB tracer, in winter ($R^2=0.81$) than in summer ($R^2=0.66$), suggests more significant contribution of BB emissions in winter to the observed HULIS. It is interesting to note that BB emissions may also have an influence on the HULIS in summer, but further study using levoglucosan that is a unique organic marker of BB emissions is required during summer. Higher correlation between HULIS and oxalate, which is mainly formed through cloud processing and/or photochemical oxidation processes, was found in the summer ($R^2=0.76$) than in the winter ($R^2=0.63$), reflecting a high fraction of secondary organic aerosol in the summer.

Influence of Solution pH on Pyrene Binding to Sorption-Fractionated and Kaolinite-Bound Humic Substance

  • Hur Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.61-69
    • /
    • 2005
  • Changes in pyrene binding by dissolved and kaolinite-associated humic substances (HS) due to HS adsorptive fractionation processes were examined using purified Aldrich humic acid (PAHA) at different pH (4, 7 and 9). Irrespective of solution pH, molecular weight (MW) fractionation occurred upon adsorption of PAHA onto kaolinite, resulting in the deviation of residual PAHA MW from the original MW prior to sorption. Variation in $K_{OC}$ by bulk PAHA was observed at different pH due to relative contributions of partitioning and size exclusion effects (i.e., specific interactions). For all pH conditions investigated, carbon-normalized pyrene binding coefficients for nonadsorbed, residual fractions $(K_{OC}(res))$ were different from the original dissolved PAHA $K_{OC}$ value $(K_{OC}(orig))$ prior to contact with the kaolinite suspensions. Positive correlations between pyrene $(K_{OC}(res))$ and weight-average molecular weight $(MW_W)$ for residual PAHA fractions were observed for pH 7 and 9. However, such a positive correlation was not found at pH 4 due to the absence of the dramatic fractionation observed for high pH conditions (i.e., exclusive fractionation with respect to higher MW), suggesting that actual MW distribution pattern is more important for sorption-fractionated HS than the composite MW value. For adsorbed PAHA, conformational changes of PAHA upon adsorption seem to be important for the extent of pyrene binding. At relatively high pH (7 and 9), lower extent of pyrene binding was observed for adsorbed PAHA versus nonadsorbed PAHA. The conformation effects were more pronounced at higher pH.