• Title/Summary/Keyword: O. sativa

Search Result 183, Processing Time 0.031 seconds

Exploration of suitable rice cultivars for close mixed-planting with upland-adapted cereal crop

  • Shinohara, Nodoka;Shimamoto, Hitoshi;Kawato, Yoshimasa;Wanga, Maliata A.;Hirooka, Yoshihiro;Yamane, Koji;Iijima, Morio
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.304-304
    • /
    • 2017
  • In semi-arid countries such as Namibia, the flooding unexpectedly happens in a rainy season, causing losses in the yield of upland-adapted cereal crop. In flooding conditions, rice roots sequentially form aerenchyma and a barrier to radial oxygen loss (ROL), and oxygen is released into the rhizosphere near the root tips. Iijima et al. (2016) and Awala et al. (2016) reported that close mixed-planting with rice can mitigate the flood stress of co-growing upland-adapted cereal crop by modifying their rhizosphere microenvironments via the oxygen released from the rice roots. Moreover, by using the model system of hydroponic culture, it was confirmed that oxygen from rice roots was transferred to co-growing upland-adapted cereal crop in close mixed planting system (Kawato et al., 2016). However, it is not sure whether the ability of oxygen release varies among rice cultivars, because Kawato et al. (2016) used only one japonica cultivar, Nipponbare (Oryza sativa). The objective of this study was to compare the ability of oxygen release in rhizosphere among rice cultivars. The experiment was conducted in a climate chamber in Kindai University. We used 10 rice cultivars from three different rice species (O. sativa (var. japonica (2), var. indica (3)), Oryza glaberrima Steud. (2) and their interspecific progenies (3)) to compare the ability of oxygen release from the roots. According to the method by Kawato et al. (2016), the dissolved oxygen concentration of phase I (with shoot) and phase II (without shoot) were measured by a fiber optic oxygen-sensing probe. The oxygen released from rice roots was calculated from the difference of the measurements between phase I and phase II. The result in this study indicated that all of the rice cultivars released oxygen from their roots, and the amount of released oxygen was significantly correlated with the above-ground biomass (r = 0.710). The ability of oxygen release (the amount of the oxygen release per fresh root weight) of indica cultivars (O. sativa) tended to be higher as compared with the other cultivars. On the other hand, that of African rice (O. glaberrima) and the interspecific progenies tended to be lower. These results suggested that the ability of oxygen release widely varies among rice cultivars, and some of indica cultivars (O. sativa) may be suitable for close mixed-planting to mitigate flood stress of upland-adapted cereal crop.

  • PDF

Oxidative Stress in Rice (Oryza sativa L.) Seedlings Induced by Flooding

  • Lee, Keun Pyo;Jung, Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.159-162
    • /
    • 2001
  • Plant stress incurred by flooding was studied in terms of oxidative stress, using greened rice seedlings subjected to a complete submergence followed by re-exposure to air under illumination ($30W/m^2$). It appeared that shoot tissues of the seedlings suffered oxygen deficiency during the flooding treatment, pertinent to the general concept. Interestingly enough, however, membrane peroxidation in shoots was enhanced by the submergence, as assessed by the content of 2-thiobarbituric acid-reactive substances (TBARS), and the re-aeration resulted in a rapid reduction of TBARS content. Such pattern of response was also seen in the change in the steady state level of $H_2O_2$. In contrast, superoxide dismutase and glutathione reductase that are involved in the detoxifying processes of superoxide in plant cells were significantly activated only during the re-aeration. These results allowed us to suggest the followings as a working hypothesis. Photorespiration-linked production of $H_2O_2$ may largely contribute to the increase in $H_2O_2$ level as well as TBARS production in shoots during the submergence. An abrupt re-supply of $CO_2$ by the re-aeration brings the photosynthetic apparatus back to full operation, suppressing photorespiration and probably causing a momentary, excess formation of superoxide and its dismutation product through side reaction, which gives rise to activating substrate-inducible antioxidative enzymes.

  • PDF

Isolation and Identification of Adenosine and Phlomuroside from the Aerial Parts of Oryza sativa L. (벼(Oryza sativa L.)의 지상부로부터 adenosine과 phlomuroside의 분리 및 동정)

  • Jeong, Rak-Hun;Lee, Dae-Young;Cho, Jin-Gyeong;Baek, Yoon-Su;Seo, Kyeong-Hwa;Lee, Dong-Geol;Kang, Hee-Cheol;Kim, Ji-Young;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.321-324
    • /
    • 2014
  • Fresh and chopped aerial parts of Oryza sativa were extracted in 80% aqueous mehthanol, and the concentrated extract was successively partitioned in n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$ fractions. From the n-BuOH fraction, two compounds were isolated through repeated silica gel and ODS column chromatography (c.c.). Based on nuclear magnetic resonance (NMR), mass spectrometry and infrared spectroscopy spectroscopic data, the compounds were identified to be adenosine (1) and phlomuroside (2). Especially, the configuration of both the anomer hydroxyl groups was determined as ${\beta}$ from the coupling constants of the anomer protons (J =6.0 and 7.6 Hz) in the $^1H-NMR$ spectra. This is the first report for the isolation of these compounds from Oryza sativa L.

Synthesis and 3D-QSARs Analyses of Herbicidal O,O-Dialkyl-1-phenoxyacetoxy-1-methylphosphonate Analogues as a New Class of Potent Inhibitors of Pyruvate Dehydrogenase

  • Soung, Min-Gyu;Hwang, Tae-Yeon;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1361-1367
    • /
    • 2010
  • A series of O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonate analogues (1~22) as a new class of potent inhibitors of pyruvate dehydrogenase were synthesized and 3D-QSARs (three dimensional qantitative structure-activity relationships) models on the pre-emergency herbicidal activity against the seed of cucumber (Cucumus Sativa L.) were derived and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indeces analysis (CoMSIA) methods. The statistical values of CoMSIA models were better predictability and fitness than those of CoMFA models. The inhibitory activities according to the optimized CoMSIA model I were dependent on the electrostatic field (41.4%), the H-bond acceptor field (26.0%), the hydrophobic field (20.8%) and the steric field (11.7%). And also, it was found that the optimized CoMSIA model I with the sensitivity to the perturbation ($d_q{^{2'}}/dr^2{_{yy'}}$ = 0.830) and the prediction ($q^2$ = 0.503) produced by a progressive scrambling analyses were not dependent on chance correlation. From the results of graphical analyses on the contour maps with the optimized CoMSIA model I, it is expected that the structural distinctions and descriptors that subscribe to herbicidal activities will be able to apply new an herbicide design.

Development of Biologically Active Compound from Edible Plant Sources -V. -Phytol, ACAT (Acyl-CoA: Cholesterol Acyltransferase) Inhibitory Diterpenoid From the Leaves of Lactuca sativa L.- (식용 식물자원으로부터 활성물질의 탐색-V. -상추(Lactuca sativa L.)의 ACAT 억제 Diterpenoid, Phytol-)

  • Jang, Tae-O;Bang, Myun-Ho;Song, Myoung-Chong;Hong, Yoon-Hee;Kim, Ji-Young;Chung, Dae-Kyun;Pai, Tong-Kun;Kwon, Byung-Mok;Kim, Young-Kuk;Lee, Hyun-Sun;Kim, In-Ho;Baek, Nam-Ln
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.66-68
    • /
    • 2003

Phytol, SSADH Inhibitory Diterpenoid of Lactuca sativa

  • Bang, Myun-Ho;Choi, Soo-Young;Jang, Tae-O;Kim, Sang-Kook;Kwon, Oh-Shin;Kang, Tae-Cheon;Won, Moo-Ho;Park, Jin-Seu;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.643-646
    • /
    • 2002
  • The succinic semialdehyde dehydrogenase (SSADH) inhibitory component was isolated from the EtOAc fraction of Lactuca sativa through repeated column chromatography; then, it was identified as phytol, a diterpenoid, based on the interpretation of several spectral data. Incubation of SSADH with the phytol results in a time-dependent loss of enzymatic activity, suggesting that enzyme modification is irreversible. The inactivation followed pseudo-first-order kinetics with the second-rate order constant of $6.15{\times}10^{-2}mM^{-1}min^{-1}.$ Complete protection from inactivation was afforded by the coenzyme $NAD^{+}$, whereas substrate succinic semialdehyde failed to prevent the inactivation of the enzyme; therefore, it seems likely that phytol covalently binds at or near the active site of the enzyme. It is postulated that the phytol is able to elevate the neurotransmitter GABA levels in central nervous system through its inhibitory action on one of the GABA degradative enzymes, SSADH.

Determination of Brassinolide by HPLC equipped with Fluoresence Detector in Rice(Oriza sativa L.) (HPLC 형광분석법을 통한 벼에서 Brassinolide의 검정)

  • Kim, In-Seon;Lee, Kang-Bong;Suh, Yong-Tack;Morgan, E.D.;Shim, Jae-Han
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.84-88
    • /
    • 1996
  • To determine brassinolide in rice(Oriza sativa L.) using HPLC equipped with fluoresence detector, a highly sensitive fluorescence reagent. 1-cyanoisoindole-2-m-phenylboronic acid, was synthesized from the reaction of o-phthaldehyde, m-phenylboronic acid and KCN, then was reacted with brassinolide. The formation ratio of brassinolide boronate exhibited 90% up at the ratio of $20\;:\;1({\mu}g/{\mu}g)$ of 1-cyanoisoindole-2-m-phenylboronic acid and brassinolide respectively. The detection limit of brassinolide boronate with fluoresence detector was 0.16 ng. Brassinolide was detected in heading stage(biomass : 10 g) and panicle formation stage(biomass : 100 g) of the rice(Oryza sativa L.) with quantity of $0.8\;{\mu}g\;and\;0.2\;{\mu}g$respectively. However, brassinolide was not detected in blooming and elongation stage.

  • PDF

Genetic Diversity of Rice Collections using Subspecies-specific STS Markers (아종특이적 STS 마커를 이용한 벼 품종의 유전다양성 분석)

  • Kim, Bong-Song;Jiang, Wenzhu;Koh, Hee-Jong
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.101-105
    • /
    • 2009
  • Rice (Oryza sativa L.), the world's most important crop, is usually classified into ssp. indica and japonica based on morpho-physiological traits. In the previous study, we have developed subspecies-specific STS markers (SS markers) to readily discriminate between indica and japonica in O. sativa. In this study, we employed SS markers to investigate the genomic inclination of worldwide collections of O. sativa. A total of 320 varieties were divided into two groups with 63 SS markers. Namely, they formed two distinctive groups, indica and japonica, as expected by their geographic origin. The population structure analysis revealed that the variability of genetic background was greater in indica than in japonica. Some of them, however, exhibited intermediate genomic inclination between indica and japonica. These results are in general agreement with the previous studies, suggesting that SS markers are powerful tools for both determination of subspecies genome and assessment of genetic diversity in rice.