Genetic Diversity of Rice Collections using Subspecies-specific STS Markers

아종특이적 STS 마커를 이용한 벼 품종의 유전다양성 분석

  • Kim, Bong-Song (Korea National Agricultural College) ;
  • Jiang, Wenzhu (Dept of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Koh, Hee-Jong (Dept of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 김봉성 (한국농업대학) ;
  • 강문수 (서울대학교 농업생명과학대학) ;
  • 고희종 (서울대학교 농업생명과학대학)
  • Received : 2009.05.22
  • Published : 20090600

Abstract

Rice (Oryza sativa L.), the world's most important crop, is usually classified into ssp. indica and japonica based on morpho-physiological traits. In the previous study, we have developed subspecies-specific STS markers (SS markers) to readily discriminate between indica and japonica in O. sativa. In this study, we employed SS markers to investigate the genomic inclination of worldwide collections of O. sativa. A total of 320 varieties were divided into two groups with 63 SS markers. Namely, they formed two distinctive groups, indica and japonica, as expected by their geographic origin. The population structure analysis revealed that the variability of genetic background was greater in indica than in japonica. Some of them, however, exhibited intermediate genomic inclination between indica and japonica. These results are in general agreement with the previous studies, suggesting that SS markers are powerful tools for both determination of subspecies genome and assessment of genetic diversity in rice.

전 세계에서 광범위하게 수집한 벼 유전자원 320개를 63개의 아종특이적마커로 분석하여 유전자원의 다양성, 유연관계 및 유전집단의 구조분석을 하여 아종특이적마커의 아종판별 효율을 검정하고 아종의 게놈 구성을 검토하고자 본 시험을 수행하였다. 1. 본 연구에서 사용한 63개의 아종특이적 마커는 벼 품종을 인디카와 자포니카 두 아종으로 구분하는데 효과적으로 이용할 수 있었다. 2. 실험에 사용한 320개의 벼 유전자원들은 자포니카군(128개)과 인디카군(178개)으로 나눌 수 있었고 Basmati370, Shennong27 등 14개 품종은 중간형 admixture형태의 품종으로 구분할 수 있었다.

Keywords

Acknowledgement

Grant : 작물유전체기능 연구사업

Supported by : 교육과학기술부

References

  1. Causse MA, Fulto TM, Cho YG, Ahn SN, Chuncongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251-1274
  2. Cavalli-Sforza LL, Edwards AWF. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 32:550-570
  3. Chin JH, Kim JH, Jiang W, Chu SH, Woo MO, Han L, Brar D, Koh HJ. 2007. Identification of subspecies-specific STS markers and their association with segregation distortion in rice. J. Crop Sci. Biotech. 10(3):175-184
  4. Chin JH, Kim JH, Kwon SW, Cho YI, Piao ZZ, Han LZ, Koh HJ. 2003. Identification of subspecies-specific RAPD markers in rice. Korean J. Breed. 35(2):102-108
  5. Cho YS, Hong SK, Song MT, Moon HP, Lee JH, Kim NS. 1998. Comparison of genetic variation among rice varieties detected by RAPD, AFLP, and SSRP. Korean J. Genet. 20(2):117-127
  6. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch SR. 2005. Genetic structure and diversity of Oryza sativa L. Genetics 169:1631-1638 https://doi.org/10.1534/genetics.104.035642.
  7. Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N. 2001. A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics 159:883-892
  8. Ikehashi H. 1982. Prospects for overcoming barriers in the utilisation of indica-japonica crosses. Oryza 19:69-77
  9. Jain S, Jain RK, McCouch SR. 2004. Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor. Appl. Genet. 109:965-977 https://doi.org/10.1007/s00122-004-1700-2
  10. Jiang W, Chu SH, Piao RH, Chin JH, Jin YM, Lee J, Qiao Y, Han L, Piao Z, Koh HJ. 2008. Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. Theor. Appl. Genet. 116(8):1117-1127 https://doi.org/10.1007/s00122-008-0740-4
  11. Khush GS. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Bio. 35:25-34 https://doi.org/10.1023/A:1005810616885
  12. Khush GS, Dela Cruz N. 2002. Developing Basmati rices with high yield potential. In:R.Duffy(Ed), Speciality Rices of the World: Breeding, Production and Marketing, pp. 15-18. Science Publisher, Enfield, USA
  13. Kwon SJ, Ahn SN, Hong HC, Moon HP, Choi HC. 1998. PCR markers for indica and japonica differentiation in rice (Oryza sativa L.). Korean J. Crop Sci.(Sup.1):112-113
  14. Liu K, Muse SR. 2005. Integrated analysis environment for genetic marker data. Bioinformatics 21(9):2128-2129 https://doi.org/10.1093/bioinformatics/bti282
  15. Oka, HI. 1988. Origin of cultivated rice. Tokyo: Japan Scientific Society Press/Elsevier
  16. Pritchard JK, Stephens M, Rosenberg ND. 2000. Association Mapping in Structured Populations. American J. Human Genet. 67(1):170-181 https://doi.org/10.1086/302959
  17. Saini N, Jain N, Jain S, Jain RK. 2004. Assessment of genetic diversity within and among Basmati and non-Basmati rice varieties using AFLP, ISSR, and SSR markers. Euphytica 140:133-146 https://doi.org/10.1007/s10681-004-2510-y
  18. Suh HS, Sato YI, Morishima H. 1997. Genetic characterization of weedy rice (Oryza sativa L.) based on morphophysiology, isozymes and RAPD markers. Theor. Appl. Genet. 94:316-321 https://doi.org/10.1007/s001220050417
  19. Zhang Q, Liu KD, Yang GP, Saghai Maroof MA, Xu GC, Zhou ZQ. 1997. Molecular marker diversity and hybrid sterility in indica-japonica rice crosses. Theor. Appl. Genet. 95:112-118 https://doi.org/10.1007/s001220050538