• Title/Summary/Keyword: O-Methylation

Search Result 95, Processing Time 0.029 seconds

Histone H3K4 Methyltransferase SET1A Stimulates the Adipogenesis of 3T3-L1 Preadipocytes (히스톤 H3K4 메칠화효소 SET1A에 의한 지방세포 분화 촉진)

  • Kim, Seon Hoo;Jung, Myeong Ho
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1104-1110
    • /
    • 2017
  • SET1A is a histone H3K4 methyltransferase that catalyzes di- and trimethylation of histone H3 at lysine 4 (H3K4). Mono-, di-, and trimethylations on H3K4 (H3K4me1, H3K4me2, and H3K4me3, respectively) are generally correlated with gene activation. Although H3K4 methylation is associated with the stimulation of adipogenesis of 3T3-L1 preadipocytes, it remains unknown whether SET1A plays a role in the regulation of adipogenesis of 3T3-L1 preadipocytes. Here, we investigated whether SET1A regulates 3T3-L1 preadipocytes' adipogenesis and characterized the mechanism involved in this regulation. SET1A expression increased during 3T3-L1 preadipocytes' adipogenesis. Consistent with the increased SET1A expression, the global H3K4me3 level had also increased on day 2 after the induction of adipogenesis in 3T3-L1 adipocytes. SET1A knockdown using siRNA in 3T3-L1 preadipocytes inhibited 3T3-L1 preadipocytes' adipogenesis, as assessed by Oil Red O staining and the expression of adipogenic genes, indicating that SET1A stimulates the adipogenesis of 3T3-L1 preadipocytes. SET1A knockdown inhibited the cell proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE) via down-regulation of the cell cycle gene cyclin E1, as well as the DNA synthesis gene, dihydrofolate reductase. Furthermore, SET1A knockdown repressed peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) expression during the late stage of adipogenesis. These results indicate that SET1A stimulates MCE and $PPAR{\gamma}$ expression, which leads to the promotion of 3T3-L1 preadipocytes' adipogenesis.

Development of High Quality Forage Grass by Down-regulating Lignin Biosynthetic Gene (리그닌 생합성관련 유전자의 발현조절에 의한 고품질 목초 개발)

  • Woo Hyun-Sook;Yun Jung-Woo;Lee Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • To develop a new variety of orchardgrass with improved digestibility, caffeic acid O-methyltransferase (Dgcomt), which is a methylation enzyme involved in the early stages of lignin biosynthesis, was isolated and characterized. Dgcomt was expressed not only in leaves but also in stems and roots. The expression levels of transcripts were high in stems and roots which are the most lignified tissues, and only moderate levels of transcripts were expressed in leaves. To develop transgenic orchardgrass plants by down-regulating the Dgcomt gene, an RNAi suppression vector with partial Dgcomt DNA fragment was constructed and transferred into the genome of orchardgrass via Agrobacterium-mediated gene transfer method. PCR and Southern blot analyses with genomic DNAs from putative transgenic plants revealed that the T-DNA region containing RNAi construct was successfully integrated into the genome of orchardgrass. Northern blot analysis revealed that the majority of the down-regulated transgenic lines showed significant reduction in Dgcomt gene expression. These RNAi transgenic orchardgrass will be useful for molecular breeding of new variety with improved digestibility by down-regulating lignin biosynthetic enzyme.

Analytical Methods of Levoglucosan, a Tracer for Cellulose in Biomass Burning, by Four Different Techniques

  • Bae, Min-Suk;Lee, Ji-Yi;Kim, Yong-Pyo;Oak, Min-Ho;Shin, Ju-Seon;Lee, Kwang-Yul;Lee, Hyun-Hee;Lee, Sun-Young;Kim, Young-Joon
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.53-66
    • /
    • 2012
  • A comparison of analytical approaches for Levoglucosan ($C_6H_{10}O_5$, commonly formed from the pyrolysis of carbohydrates such as cellulose) and used for a molecular marker in biomass burning is made between the four different analytical systems. 1) Spectrothermography technique as the evaluation of thermograms of carbon using Elemental Carbon & Organic Carbon Analyzer, 2) mass spectrometry technique using Gas Chromatography/mass spectrometer (GC/MS), 3) Aerosol Mass Spectrometer (AMS) for the identification of the particle size distribution and chemical composition, and 4) two dimensional Gas Chromatography with Time of Flight mass spectrometry (GC${\times}$GC-TOFMS) for defining the signature of Levoglucosan in terms of chemical analytical process. First, a Spectrothermography, which is defined as the graphical representation of the carbon, can be measured as a function of temperature during the thermal separation process and spectrothermographic analysis. GC/MS can detect mass fragment ions of Levoglucosan characterized by its base peak at m/z 60, 73 in mass fragment-grams by methylation and m/z 217, 204 by trimethylsilylderivatives (TMS-derivatives). AMS can be used to analyze the base peak at m/z 60.021, 73.029 in mass fragment-grams with a multiple-peak Gaussian curve fit algorithm. In the analysis of TMS derivatives by GC${\times}$GC-TOFMS, it can detect m/z 73 as the base ion for the identification of Levoglucosan. It can also observe m/z 217 and 204 with existence of m/z 333. Although the ratios of m/z 217 and m/z 204 to the base ion (m/z 73) in the mass spectrum of GC${\times}$GC-TOFMS lower than those of GC/MS, Levoglucosan can be separated and characterized from D (-) +Ribose in the mixture of sugar compounds. At last, the environmental significance of Levoglucosan will be discussed with respect to the health effect to offer important opportunities for clinical and potential epidemiological research for reducing incidence of cardiovascular and respiratory diseases.

Immunostimulatory activity and intracellular signaling pathways of a rhamnogalcaturonan II polysaccharide isolated from ginseng berry (인삼열매로부터 분리한 Rhamnogalacturonan II 다당의 면역활성과 세포 내 신호전달 기작 규명)

  • Cha, Ha Young;Son, Seung-U;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.722-730
    • /
    • 2021
  • In this study, we aimed to elucidate the intracellular signaling pathways for macrophage activation by the polysaccharide GBW-II purified from ginseng berry. GBW-II consists of 14 different sugars, including rarely observed sugars such as 2-O-methyl-xylose, apiose, aceric acid, 2-keto-3-deoxy-D-manno-2-octulosonic acid, and 2-keto-3-deoxy-D-lyxo-2-heptulosaric acid, which are typical RG-II component sugars. GBW-II enhanced the production of IL-6 and TNF-α in RAW 264.7 cells. In experiments evaluating specific inhibitor activity, it was found that the production of IL-6 was suppressed by inhibitors of SB, PD, and BAY, and the production of TNF-α was suppressed by PD and BAY. The experiments with neutralizing antibodies showed that TLR4 was involved in the stimulation of IL-6 production by GBW-II in RAW 264.7 cells, whereas TNF-α production was regulated through SR and TLR2. These results suggest that GBW-II activates the MAPK and NF-κB pathways via several macrophage receptors, including SR, TLR2, and TLR4, and subsequently induces the secretion of IL-6 and TNF-α.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF