• Title/Summary/Keyword: O2/Ar

Search Result 287, Processing Time 0.039 seconds

Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method (원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.

Physicochemical properties of different phases of titanium dioxide nanoparticles

  • Dong, Vu Phuong;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.105-110
    • /
    • 2021
  • The physicochemical properties of crystalline titanium dioxide nanoparticles (TiO2 NPs) were investigated by comparing amorphous (amTiO2), anatase (aTiO2), metaphase of anatase-rutile (arTiO2), and rutile (rTiO2) NPs, which were prepared at various calcination temperatures (100℃, 400℃, 600℃, and 900℃). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed that the phase-transformed TiO2 had the characteristic features of crystallinity and average size. The surface chemical properties of the crystalline phases were different in the spectral analysis. As anatase transformed to the rutile phase, the band of the hydroxyl group at 3,600-3,100 cm-1 decreased gradually, as assessed using Fourier transform infrared spectroscopy (FT-IR). For ultraviolet-visible (UV-Vis) spectra, the maximum absorbance of anatase TiO2 NPs at 309 nm was blue-shifted to 290 nm at the rutile phase with reduced absorbance. Under the electric field of capillary electrophoresis (CE), TiO2 NPs in anatase migrated and detected as a broaden peak, whereas the rutile NPs did not. In addition, anatase showed the highest photocatalytic activity in an UV-irradiated dye degradation assay in the following order: aTiO2 > arTiO2 > rTiO2. Overall, the phases of TiO2 NPs showed characteristic physicochemical properties regarding size, surface chemical properties, UV absorbance, CE migration, and photocatalytic activity.

The Dry Etching Properties of ZnO Thin Film in Cl2/BCl3/Ar Plasma

  • Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.116-119
    • /
    • 2010
  • The etching characteristics of zinc oxide (ZnO) were investigated, including the etch rate and the selectivity of ZnO in a $Cl_2/BCl_3$/Ar plasma. It was found that the ZnO etch rate, the RF power, and the gas pressure showed non-monotonic behaviors with an increasing Cl2 fraction in the $Cl_2/BCl_3$/Ar plasma, a gas mixture of $Cl_2$(3 sccm)/$BCl_3$(16 sccm)/Ar (4 sccm) resulted in a maximum ZnO etch rate of 53 nm/min and a maximum etch selectivity of 0.89 for ZnO/$SiO_2$. We used atomic force microscopy to determine the roughness of the surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas. Due to the relatively low volatility of the by-products formed during etching with $Cl_2/BCl_3$/Ar plasma, ion bombardment and physical sputtering were required to obtain the high ZnO etch rate. The chemical states of the etched surfaces were investigated using X-ray photoelectron spectroscopy (XPS). This data suggested that the ZnO etch mechanism was due to ion enhanced chemical etching.

Characterization of the Annealing Effect of 0.5 % Ce-doped Ba(Zr0.2Ti0.8)O3 Thin Films Grown by Rf Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 성장시킨 0.5% Ce-doped Ba(Zr0.2Ti0.8)O3 (BCZT) 박막의 열처리 특성분석)

  • 최원석;박용섭;이준신;홍병유
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.361-364
    • /
    • 2003
  • It was investigated that the structural and electrical Properties of Ce-doped Ba(Zr$_{x}$Ti$_{1-x}$ )O$_3$ (BCZT) thin films with a mole fraction of x=0.2 and a thickness about 100 nm. BCZT films were prepared on Pt/Ti/SiO$_2$/Si substrate by a RF magnetron sputtering system. We have measured the thickness profile with Ar/O$_2$ ratio and the surface roughness. It was observed that the oxygen gas, which introduced during the film deposition, have an influence on the roughness of the film and the film roughness was reduced by annealing from 2.33 nm to 2.02 nm (RMS at 500 $^{\circ}C$, Ar:6 sccm, $O_2$:6 sccm). It was found that annealing procedure after top electrode deposit can reduce the dissipation factor.

Corrosion Behavior of Hastelloy C-276 for Carbon-anode-based Oxide Reduction Applications

  • Jeon, Min Ku;Kim, Sung-Wook;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.383-393
    • /
    • 2020
  • The corrosion behavior of Hastelloy C-276 was investigated to identify its applicability for carbon-anode-based oxide reduction (OR), in which Cl2 and O2 are simultaneously evolved at the anode. Under a 30 mL·min-1 Cl2 + 170 mL·min-1 Ar flow, the corrosion rate was less than 1 g·m-2·h-1 up to 500℃, whereas the rate increased exponentially from 500 to 700℃. The effects of the Cl2-O2 composition on the corrosion rate at flow rates of 30 mL·min-1 Cl2, 20 mL·min-1 Cl2 + 10 mL·min-1 O2, and 10 mL·min-1 Cl2 + 20 mL·min-1 O2 with a constant 170 mL·min-1 Ar flow rate at 600℃ was analyzed. Based on the data from an 8 h reaction, the fastest corrosion rate was observed for the 20 mL·min-1 Cl2 + 10 mL·min-1 O2 case, followed by 30 mL·min-1 Cl2 and 10 mL·min-1 Cl2 + 20 mL·min-1 O2. The effects of the chlorine flow rate on the corrosion rate were negligible within the 5-30 mL·min-1 range. A surface morphology analysis revealed the formation of vertical scratches in specimens that reacted under the Cl2-O2 mixed gas condition.

The Study of the Etch Characteristics of the HfAlO3 Thin Film in O2/BCl3/Ar Plasma (O2/BCl3/Ar 플라즈마를 이용한 HfAlO3 박막의 식각특성 연구)

  • Ha, Tae-Kyung;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.924-928
    • /
    • 2010
  • In this study, $HfAlO_3$ thin films using gate insulator of MOSFET were etched in inductively coupled plasma. The etch characteristics of the $HfAlO_3$ thin films has been investigated by varying $O_2/BCl_3$/Ar gas mixing ratio, a RF power, a DC bias voltage and a process pressure. As the $O_2$ concentration increases further, $HfAlO_3$ was redeposited. As increasing RF power and DC bias voltage, etch rates of the $HfAlO_3$ thin films increased. Whereas, as decreasing of the process pressure, etch rates of the $HfAlO_3$ thin films increased. The chemical reaction on the surface of the etched the $HfAlO_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS). These peaks moved a binding energy. This chemical shift indicates that there are chemical reactions between the $HfAlO_3$ thin films and radicals and the resulting etch by-products remain on the surface.

The Study on the Etching Characteristics of (Ba, Sr)TiO$_3$ Film by Inductively Coupled Plasma (유도결합 플라즈마에 의한(Ba, Sr)TiO$_3$ 박막의 식각 특성 연구)

  • 김승범;이영준;염근영;김창일
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.56-62
    • /
    • 1999
  • In this study, (Ba, Sr)$TiO_3$ thin films were etched with $Cl_2$/Ar gas mixing ratio in an inductively coupled plasma (ICP) by varying the etching parameter such as rf power, dc bias voltage, and chamber pressure. The etch rate was 56 nm/min under $Cl_2$/($Cl_2$+Ar) gas mixing ratio of 0.2, rf power of 600 W, dc bias voltage of 250 V, and chamber pressure of 5 mTorr. At this time, the selectivity of BST to Pt, $SiO_2$ was respectively 0.52, 0.43. The surface reaction of the etched (Ba, Sr)$TiO_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS). Ba is removed by chemical reaction between Sr and Cl to remove Sr. Ti is removed by chemical reaction such as $TiCl_4$ with ease. The results of secondary ion mass spectrometer (SIMS) analysis compared with the results of XPS analysis and the results were the same.

  • PDF

Corrosion Behavior of Stainless Steel 316 for Carbon Anode Oxide Reduction Application

  • Jeon, Min Ku;Kim, Sung-Wook;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.169-177
    • /
    • 2020
  • Here, the stability of stainless steel 316 (SS-316) was investigated to identify its applicability in the oxide reduction process, as a component in related equipment, to produce a complicated gas mixture composed of O2 and Cl2 under an argon (Ar) atmosphere. The effects of the mixed gas composition were investigated at flow rates of 30 mL/min O2, 20 mL/min O2 + 10 mL/min Cl2, 10 mL/min O2 + 20 mL/min Cl2, and 30 mL/min Cl2, each at 600℃, during a constant argon flow rate of 170 mL/min. It was found that the corrosion of SS-316 by the chlorine gas was suppressed by the presence of oxygen, while the reaction proceeded linearly with the reaction time regardless of gas composition. Surface observation results revealed an uneven surface with circular pits in the samples that were fed mixed gases. Thermodynamic calculations proposed the combination of Fe and Ni chlorination reactions as an explanation for this pit formation phenomenon. An exponential increase in the corrosion rate was observed with an increase in the reaction temperature in a range of 300 ~ 600℃ under a flow of 30 mL/min Cl2 + 170 mL/min Ar.

Applications of Ar Gas Cluster Ion Beam Sputtering to Ta2O5 thin films on SiO2/Si (100)

  • Park, Chanae;Chae, HongChol;Kang, Hee Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.119-119
    • /
    • 2015
  • Ion beam sputtering has been widely used in Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES) for depth profile or surface cleaning. However, mainly due to severe matrix effects such as surface composition change from its original composition and damage of the surface generated by ion beam bombardment, conventional sputtering skills using mono-atomic primary ions with energy ranging from a few hundred to a thousand volts are not sufficient for the practical surface analysis of next-generation organic/inorganic device materials characterization. Therefore, minimization of the surface matrix effects caused by the ion beam sputtering is one of the key factors in surface analysis. In this work, the electronic structure of a $Ta_2O_5$ thin film on $SiO_2/Si$ (100) after Ar Gas Cluster Ion Beam (GCIB) sputtering was investigated using X-ray photoemission spectroscopy and compared with those obtained via mono-atomic Ar ion beam sputtering. The Ar ion sputtering had a great deal of influence on the electronic structure of the oxide thin film. Ar GCIB sputtering without sample rotation also affected the electronic structure of the oxide thin film. However, Ar GCIB sputtering during sample rotation did not exhibit any significant transition of the electronic structure of the $Ta_2O_5$ thin films. Our results showed that Ar GCIB can be useful for potential applications of oxide materials with sample rotation.

  • PDF

CF4/O2/Ar Plasma Resistance of Al2O3 Free Multi-components Glasses (Al2O3 Free 다성분계 유리의 CF4/O2/Ar 내플라즈마 특성)

  • Min, Kyung Won;Choi, Jae Ho;Jung, YoonSung;Im, Won Bin;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.57-62
    • /
    • 2022
  • The plasma resistance of multi-component glasses containing La, Gd, Ti, Zn, Y, Zr, Nb, and Ta was analyzed in this study. The plasma etching was performed via inductively coupled plasma-reactive ion etching (ICP-RIE) using CF4/O2/Ar mixed gas. After the reaction, the glass with a low fluoride sublimation temperature and high content of P, Si, and Ti elements showed a high etching rate. On the other hand, the glass containing a high fluoride sublimation temperature component such as Ca, La, Gd, Y, and Zr exhibited high plasma resistance because the etch rate was lower than that of sapphire. Glass with low plasma resistance increased surface roughness after etching or nanoholes were formed on the surface, but glass with high plasma resistance showed little change in surface microstructure. Thus, the results of this study demonstrate the potential for the development of plasma-resistant glasses (PRGs) with other compositions besides alumino-silicate glasses, which are conventionally referred to as plasma-resistant glasses.