• Title/Summary/Keyword: O/d based model

Search Result 254, Processing Time 0.032 seconds

Development of Low-pressure Gas Gun Type Impact Tester using CFD Simulation (유동해석을 통한 저압 가스 건 타입 고속 충격시험기 개발)

  • P. H. Kim;S. K. Lee;O. D. Kwon;K. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.309-314
    • /
    • 2024
  • Supersonic aircraft and missiles often encounter damage issues due to high-speed collisions with small objects such as ice particles and water droplets. This can significantly impact the safety and performance of these vehicles, making the assessment and development of collision testing crucial. Existing collision testing methods have relied on equipment such as gas guns, which utilize high pressure. However, most accelerators for projectiles are large-scale devices designed for weaponry and high-pressure gases, rendering them inaccessible and unsuitable for laboratory use. Therefore, there is a need for research into easily accessible and economically efficient testing devices at the laboratory level. An impact tester can launch a projectile with a velocity of 100 m/s using low-pressure compressed air at approximately 10 bar. The velocity of the impact tester projectile is determined by the pressure within the chamber, friction, and the length of the barrel. In this study, computational fluid dynamics was utilized to define friction coefficients that match experimental results based on projectile weight, enabling accurate prediction of velocity. The resulting data provides practical and effective insights for the design of impact testers, utilizing the defined friction coefficients to understand and predict complex physical phenomena.

Dynamic OD Estimation with Hybrid Discrete Choice of Traveler Behavior in Transportation Network (복합 통행행태모형을 이용한 동적 기.종점 통행량 추정)

  • Kim, Chae-Man;Jo, Jung-Rae
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.6 s.92
    • /
    • pp.89-102
    • /
    • 2006
  • The purpose of this paper is to develop a dynamic OD estimating model to overcome the limitation of depicting teal situations in dynamic simulation models based on static OD trip. To estimate dynamic OD matrix we used the hybrid discrete choice model(called the 'Demand Simulation Model'), which combines travel departure time with travel mode and travel path. Using this Demand Simulation Model, we deduced that the traveler chooses the departure time and mode simultaneously, and then choose his/her travel path over the given situation In this paper. we developed a hybrid simulation model by joining a demand simulation model and the supply simulation model (called LiCROSIM-P) which was Previously developed. We simulated the hybrid simulation model for dependent/independent networks which have two origins and one destination. The simulation results showed that AGtt(Average gap expected travel time and simulated travel time) did not converge, but average schedule delay gap converged to a stable state in transportation network consisted of multiple origins and destinations, multiple paths, freeways and some intersections controlled by signal. We present that the hybrid simulation model can estimate dynamic OD and analyze the effectiveness by changing the attributes or the traveler and networks. Thus, the hybrid simulation model can analyze the effectiveness that reflects changing departure times, travel modes and travel paths by demand management Policy, changing network facilities, traffic information supplies. and so on.

Multiscale bending and free vibration analyses of functionally graded graphene platelet/ fiber composite beams

  • Garg, A.;Mukhopadhyay, T.;Chalak, H.D.;Belarbi, M.O.;Li, L.;Sahoo, R.
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.707-720
    • /
    • 2022
  • In the present work, bending and free vibration analyses of multilayered functionally graded (FG) graphene platelet (GPL) and fiber-reinforced hybrid composite beams are carried out using the parabolic function based shear deformation theory. Parabolic variation of transverse shear stress across the thickness of beam and transverse shear stress-free conditions at top and bottom surfaces of the beam are considered, and the proposed formulation incorporates a transverse displacement field. The present theory works only with four unknowns and is computationally efficient. Hamilton's principle has been employed for deriving the governing equations. Analytical solutions are obtained for both the bending and free vibration problems in the present work considering different variations of GPLs and fibers distribution, namely, FG-X, FG-U, FG-Λ, and FG-O for beams having simply-supported boundary condition. First, the matrix is assumed to be strengthened using GPLs, and then the fibers are embedded. Multiscale modeling for material properties of functionally graded graphene platelet/fiber hybrid composites (FG-GPL/FHRC) is performed using Halpin-Tsai micromechanical model. The study reveals that the distributions of GPLs and fibers have significant impacts on the stresses, deflections, and natural frequencies of the beam. The number of layers and shape factors widely affect the behavior of FG-GPL-FHRC beams. The multilayered FG-GPL-FHRC beams turn out to be a good approximation to the FG beams without exhibiting the stress-channeling effects.

Supply Chain-based Freight Distribution Channel Choice Model using Distribution Channel Analysis (유통경로분석을 통한 공급사슬기반의 화물유통경로선택모형 개발)

  • Go, Yeong-Seung;Park, Dong-Ju;Kim, Chan-Seong;Kim, Hyeon-Su;Park, Min-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.133-146
    • /
    • 2010
  • The objective of this study is to develop a supply chain-based freight distribution channel choice model considering shippers' logistics behaviors which will be used for freight demand estimation. For this purpose, this study utilized the distribution channel data of the petrochemical and automobile industries collected by KTDB center. The distribution channel choice models for these industries were developed by including transport mode, time, cost, and shipment size. It was found that the multinomial logit model with transport cost, time and shipment size is the best, and as shipment increases, bigger transport mode is preferred. Generally direct distribution channel with small truck was preferred over the one using distribution center and/or big truck.

France's Cluster Policy: the Competitiveness Pole (프랑스의 산업클러스터 정책 -경쟁거점($P{\hat{o}}le$ de $Comp{\acute{e}}titivit{\acute{e}}$)을 중심으로)

  • Jeong, Ok-Ju
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.6
    • /
    • pp.704-719
    • /
    • 2006
  • The study deals with the France's recent cluster policy represented by the Competitiveness Pole. As a national level cluster supporting policy driven by the central government, the Competitiveness Pole, called 'French cluster model', :is competitiveness-oriented, and principally based on three main factors: partnerships, R&D projects and international visibility. The Competitiveness Pole is also the fruit or a long time effort to establish a decentralized governance system, and it has a lot for Korea to benchmark its relevant policies. After reviewing the Local Production System that was put in place before the Competitiveness Pole, the study treats main aspects or Competitiveness Pole policy. It analyze, then, the significance or the policy in the trend or the overall territorial policy or the country. Lastly, the study provides some implications for Korean policies such as industrial clusters, the Enterprise City and Innovation City.

  • PDF

A DFT Study on the Polarizability of Di-substituted Arene (o-, m-, p-) Molecules used as Supercharging Reagents during Electrospray Ionization Mass Spectrometry

  • Abaye, Daniel A.;Aniagyei, Albert;Adedia, David;Nielsen, Birthe V.;Opoku, Francis
    • Mass Spectrometry Letters
    • /
    • v.13 no.3
    • /
    • pp.49-57
    • /
    • 2022
  • During electrospray ionization mass spectrometry (ESI-MS) analysis of proteins, the addition of supercharging agents allows for adjusting the maximal charge state, affecting the charge state distribution, and increases the number of ions reaching the detector thus, improving signal detection. We postulate that in di-substituted arene isomers, molecules with higher polarizability values should generate greater interactions and hence elicit higher signal intensities. Polarizability is an electronic parameter which has been demonstrated to predict many chemical interactions. Many properties can be predicted based on charge polarization. Molecular polarizability is a vital descriptor for explaining intermolecular interactions. We employed DFT (density functional/Hartree-Fock hybrid model, B3LYP)-derived descriptors and computed molecular polarizability for ten disubstituted arene reagents, each set made up of three (ortho, meta, para) isomers, with reported use as supercharging reagents during ESI experiments. The atomic electronic inputs were ionization potential (IP), electron affinity (EA), electronegativity (𝛘), hardness (η), chemical potential (µ), and dipole moment (D). We determined that the para isomers showed the highest polarizability values in nine of the ten sets. There was no difference between the ortho and meta isomers. Polarizability also increased with increasing complexity of the substituents on the benzene ring. Polarizability correlated positively with IP, EA, 𝛘, η, and D but correlated negatively with chemical potential. This DFT study predicts that the para isomers of di-substituted arene isomers should elicit the strongest ESI responses. An experimental comparison of the three isomers, especially of larger supercharging molecules, could be carried out to establish this premise.

Effects of Combined Treatment of Aqueous Chlorine Dioxide and Fumaric Acid on the Microbial Growth in Fresh-cut Paprika (Capsicum annuum L.) (신선편이 파프리카의 미생물 생장에 있어서 이산화염소수와 푸마르산 병합처리의 효과)

  • Jung, Seung-Hun;Park, Seung-Jong;Chun, Ho-Hyun;Song, Kyung Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.83-87
    • /
    • 2014
  • The effects of combined treatment of aqueous chlorine dioxide ($ClO_2$) and fumaric acid on the microbial growth in fresh-cut paprika were investigated. After the combined treatment, the populations of total aerobic bacteria and inoculated Listeria monocytogenes in the paprika sample were reduced by 0.82 and 1.21 log CFU/g, respectively, compared to those of the control. In addition, after 10 d of storage at $10^{\circ}C$, the populations were decreased by 1.21 and 2.10 log CFU/g, respectively. The predictive model for the populations of total aerobic bacteria and L. monocytogenes in the paprika was applied during storage. The prediction equation using Gompertz model was appropriate, based on the statistical analysis such as accuracy factor and bias factor. These results suggest that the combined treatment of aqueous $ClO_2$ and fumaric acid can be an effective technology for microbial decontamination and it can improve microbial safety by decreasing maximum growth rate and increasing lag time of bacteria in the fresh-cut paprika.

Development of Pre-Processing and Bias Correction Modules for AMSU-A Satellite Data in the KIAPS Observation Processing System (KIAPS 관측자료 처리시스템에서의 AMSU-A 위성자료 초기 전처리와 편향보정 모듈 개발)

  • Lee, Sihye;Kim, Ju-Hye;Kang, Jeon-Ho;Chun, Hyoung-Wook
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.453-470
    • /
    • 2013
  • As a part of the KIAPS Observation Processing System (KOPS), we have developed the modules of satellite radiance data pre-processing and quality control, which include observation operators to interpolate model state variables into radiances in observation space. AMSU-A (Advanced Microwave Sounding Unit-A) level-1d radiance data have been extracted using the BUFR (Binary Universal Form for the Representation of meteorological data) decoder and a first guess has been calculated with RTTOV (Radiative Transfer for TIROS Operational Vertical Sounder) version 10.2. For initial quality checks, the pixels contaminated by large amounts of cloud liquid water, heavy precipitation, and sea ice have been removed. Channels for assimilation, rejection, or monitoring have been respectively selected for different surface types since the errors from the skin temperature are caused by inaccurate surface emissivity. Correcting the bias caused by errors in the instruments and radiative transfer model is crucial in radiance data pre-processing. We have developed bias correction modules in two steps based on 30-day innovation statistics (observed radiance minus background; O-B). The scan bias correction has been calculated individually for each channel, satellite, and scan position. Then a multiple linear regression of the scan-bias-corrected innovations with several predictors has been employed to correct the airmass bias.

NUMERICAL INVESTIGATION OF PLUME-INDUCED FLOW SEPARATION FOR A SPACE LAUNCH VEHICLE (우주발사체의 플룸에 따른 유동박리 현상에 대한 수치적 연구)

  • Ahn, S.J.;Hur, N.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.66-71
    • /
    • 2013
  • In this paper, the supersonic flows around space launch vehicles have been numerically simulated by using a 3-D RANS flow solver. The focus of the study was made for investigating plume-induced flow separation(PIFS). For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras model was employed for the closure of turbulence. The Gauss-Seidel iteration was used for time integration. To validate the flow solver, calculation was made for the 0.04 scale model of the Saturn-5 launch vehicle at the supersonic flow condition without exhaust plume, and the predicted results were compared with the experimental data. Good agreements were obtained between the present results and the experiment for the surface pressure coefficient and the Mach number distribution inside the boundary layer. Additional calculations were made for the real scale of the Saturn-5 configuration with exhaust plume. The flow characteristics were analyzed, and the PIFS distances were validated by comparing with the flight data. The KSLV-1 is also simulated at the several altitude conditions. In case of the KSLV-1, PIFS was not observed at all conditions, and it is expected that PIFS is affected by the nozzle position.

Numerical Modeling of Tide and Tidal Current in the Kangjin Bay, South Sea, Korea

  • Ro, Young-Jae;Jun, Woong-Sik;Jung, Kwang-Young;Eom, Hyun-Min
    • Ocean Science Journal
    • /
    • v.42 no.3
    • /
    • pp.153-163
    • /
    • 2007
  • This study is based on a series of numerical modeling experiments to understand the tidal circulation in the Kangjin Bay (KB). The tidal circulation in the KB is mostly controlled by the inflow from two channels, Noryang and Daebang which introduce the open ocean water into the northern part of the KB with relatively strong tidal current, while in the southern part of the KB, shallowest region of the entire study area, weak tidal current prevails. The model prediction of the sea level agrees with observed records at skill scores exceeding 90 % in terms of the four major tidal constituents (M2, S2, K1, O1). However, the skill scores for the tidal current show relatively lower values of 87, 99, 59, 23 for the semi-major axes of the constituents, respectively. The tidal ellipse parameters in the KB are such that the semi-major axes of the ellipse for M2 range from 1.7 to 38.5 cm/s and those for S2 range from 0.5 to 14.4 cm/s. The orientations of the major-axes show parallel with the local isobath. The eccentricity values at various grid points of ellipses for M2 and S2 are very low with 0.2 and 0.06 on the average, respectively illustrating that the tidal current in the KB is strongly rectilinear. The magnitude of the tidal residual current speed in the KB is on the order of a few cm/s and its distribution pattern is very complex. One of the most prominent features is found to be the counter-clockwise eddy recirculation cell at the mouth of the Daebang Channel.