Browse > Article
http://dx.doi.org/10.5478/MSL.2022.13.2.49

A DFT Study on the Polarizability of Di-substituted Arene (o-, m-, p-) Molecules used as Supercharging Reagents during Electrospray Ionization Mass Spectrometry  

Abaye, Daniel A. (Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences)
Aniagyei, Albert (Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences)
Adedia, David (Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences)
Nielsen, Birthe V. (School of Science, Faculty of Engineering and Science, University of Greenwich)
Opoku, Francis (Department of Chemistry, College of Science, Kwame Nkrumah University of Science & Technology)
Publication Information
Mass Spectrometry Letters / v.13, no.3, 2022 , pp. 49-57 More about this Journal
Abstract
During electrospray ionization mass spectrometry (ESI-MS) analysis of proteins, the addition of supercharging agents allows for adjusting the maximal charge state, affecting the charge state distribution, and increases the number of ions reaching the detector thus, improving signal detection. We postulate that in di-substituted arene isomers, molecules with higher polarizability values should generate greater interactions and hence elicit higher signal intensities. Polarizability is an electronic parameter which has been demonstrated to predict many chemical interactions. Many properties can be predicted based on charge polarization. Molecular polarizability is a vital descriptor for explaining intermolecular interactions. We employed DFT (density functional/Hartree-Fock hybrid model, B3LYP)-derived descriptors and computed molecular polarizability for ten disubstituted arene reagents, each set made up of three (ortho, meta, para) isomers, with reported use as supercharging reagents during ESI experiments. The atomic electronic inputs were ionization potential (IP), electron affinity (EA), electronegativity (𝛘), hardness (η), chemical potential (µ), and dipole moment (D). We determined that the para isomers showed the highest polarizability values in nine of the ten sets. There was no difference between the ortho and meta isomers. Polarizability also increased with increasing complexity of the substituents on the benzene ring. Polarizability correlated positively with IP, EA, 𝛘, η, and D but correlated negatively with chemical potential. This DFT study predicts that the para isomers of di-substituted arene isomers should elicit the strongest ESI responses. An experimental comparison of the three isomers, especially of larger supercharging molecules, could be carried out to establish this premise.
Keywords
Polarizability; supercharging reagents; electrospray ionization; gas-phase; DFT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Iavarone, A. T.; Williams E. R. Int. J. Mass Spectrom. 2002, 219, 63-72. https://dx.doi.org/10.1021%2Fja021202t   DOI
2 Samalikova, M.; Grandori, R. J. Mass Spectrom., 2005, 40(4), 503. https://doi.org/10.1002/jms.821   DOI
3 Nielsen, B.V.; Abaye, D. A.; Nguyen, Minh, T.L. MSL, 2017, 8(2), 29-33.
4 Marcus, Y. Ion SolVation; Wiley: 1985. https://www.worldcat.org/title/ion-solvation/oclc/647496317
5 Wang, J.; Xiang-Qun, X.; Tingjun, H.; Xiaojie, X. J. Phys. Chem. A 2007, 111, 4443-4448. https://doi.org/10.1021/jp068423w   DOI
6 Yan, A.; Gasteiger, J. J. Chem. Inf. Comput. Sci. 2003, 43, 429-434. https://doi.org/10.1021/ci025590u   DOI
7 Raevsky, O.; Andreeva, E.; Raevskaja, O.; Skvortsov, V.; Schaper, K. SAR and QSAR Eniron. Res. 2005, 16, 191-202. doi: 10.1080/10629360412331319862   DOI
8 Hilal, S. H.; Karickhoff, S. W. QSAR Comb. Sci. 2003, 22, 565-574. http://dx.doi.org/10.1002/qsar.200330812   DOI
9 Tandon, H.; Ranjan, P.; Chakraborty, T. Suhag, V. Molecular Diversity, 2021, 25, 249-262. https://link.springer.com/article/10.1007/s11030-020-10062-w   DOI
10 Verma, R. P.; Kurup, A; Hansch, C. Bioorg. Med. Chem., 2005, 13, 237-255. https://doi.org/10.1016/j.bmc.2004.09.039   DOI
11 Bosque, R.; Sales, J. J. Chem. Inf. Comput. Sci. 2002, 42, 1154-1163. https://doi.org/10.1021/ci025528x   DOI
12 Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys., 1980, 58, 1200-1211. https://doi.org/10.1139/p80-159   DOI
13 Becke, A. D. The J. Chem. Phys, 1993, 98, 5648-5652. https://doi.org/10.10631/1.464913   DOI
14 Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys, 1994, 100, 5829-5835. https://doi.org/10.1063/1.467146   DOI
15 Vektariene, A.; Vektaris, G.; Svoboda, J. ARKIVOC. 2009, 7, 311-329. http://dx.doi.org/10.3998/ark.5550190.0010.730   DOI
16 Lee, C.; Yang, W.; Parr, R. G. Phys Rev B. 1988, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785   DOI
17 Ditchfield, R.; Hehre, W. J.; Pople, J. A. The J. Chem Phys., 1971, 54, 724-728. https://doi.org/10.1063/1.1674902   DOI
18 Frisch, M. J.; Trucks, G.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A. et al., Gaussian 09, Revision E.01, 2009, Gaussian, Inc., Wallingford CT, USA.
19 The R project for statistical computing. https://www.rproject.org/
20 Tandon, H.; Chakraborty, T; Suhag. V. J. Mathem. Chem., 2019, 57, 2142-2153. https://doi.org/10.1007/s10910-019-01055-8   DOI
21 Carruthers, W.; Coldham, I. Modern Methods of Organic Synthesis, Cambridge University Press, Cambridge, 2004.
22 Ghanty, T. K.; Ghosh, S. K. J Phys Chem. 1993, 97, 4951-4953. https://doi.org/10.1021/j100121a015   DOI
23 Nagle, J.K. J. Am. Chem. Soc. 1990, 112, 4741-4747. https://doi.org/10.1021/ja00168a019   DOI
24 Carbeck, J.D.; Severs, J. C.; Gao, J.; Wu, J, W.; Smith, R. D. ; Whitesides, G. M. J. Phys. Chem. B, 1998, 102, 10596-10601. https://doi.org/10.1021/jp980768u   DOI
25 Abaye, D. A.; Aniagyei, A. Mendeley Data. 2022. https://data.mendeley.com/datasets/nvk8hrwgrn/1
26 S. Merck: https://www.sigmaaldrich.com/GH/en/product/aldrich/461091   DOI
27 Dearaden, J. C.; Schuurmann, G. Environ. Toxicol. Chem. 2003, 22, 1755-1770. https://doi.org/10.1897/01-605   DOI
28 Sterling, H. J.; Daly, M.; Feld, G.; Thoren, K.; Kintzer, A.; Krantz, B; Williams, E.R. J. Am. Soc. Mass Spectrom. 2010, 21, 1762-1774. https://doi.org/10.1016/j.jasms.2010.06.012   DOI
29 Konermann, K.; Metwally, H.; Duez, Q; Peters, I. Analyst, 2019, 144(21), 6157-6171. https://doi.org/10.1039/C9AN01201J   DOI
30 Hou, T. J.; Xu, X. J. J. Chem. Inf. Comput. Sci. 2003, 43, 1058-1067. https://doi.org/10.1021/ci034007m   DOI
31 Chattaraj, P. K.; Poddar, A. J. Phys Chem. A 1998, 102, 9944-9948. https://doi.org/10.1021/jp982734s   DOI
32 ChemSpider: http://www.chemspider.com/Default.aspx
33 Ruiz-Anchondo, T.; Flores-Holguin, N.; GlossmanMitnik, D. Molecules, 2010, 15, 4490-4510. https://doi.org/10.3390/molecules15074490   DOI
34 Abaye, D. A.; Pullen, F. S.; Nielsen, B. V. Rapid Commun. Mass Spectrom. 2011, 25, 1107-1116. https://doi: 10.1002/rcm.4961   DOI
35 Hati, S.; Datta, D. J. Phys. Chem. 1994, 98, 10451-10454. https://doi.org/10.1021/j100092a012   DOI
36 Iavarone, A. T.; Williams E. R. J. Am. Chem. Soc. 2003, 125, 2319-2327. https://doi.org/10.1021/ja021202t   DOI
37 Abaye, D. A.; Agbo, I. A.; Nielsen, B.V. RSC Advances. 2021, 11, 20355-20369. https://doi.org/10.1039/D1RA00745A   DOI
38 Douglass, K. A.; Venter, A.R. J. Am. Soc. Mass Spectrom. 2012, 23, 489-497. https://doi.org/10.1007/s13361-011-0319-1   DOI
39 Lomeli, S. H.; Peng, I. X.; Yin, S.; Ogorzalek Loo, R. R.; Loo, A. J. J. Am. Soc. Mass Spectrom. 2010, 21, 127-131. https://doi.org/10.1016/j.jasms.2009.09.014   DOI