• Title/Summary/Keyword: O/W emulsion

Search Result 299, Processing Time 0.031 seconds

Succinylated Pullulan Acetate Microspheres for Protein Delivery

  • Woo, Young-Rong;Seo, Seog-Jin;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.323-329
    • /
    • 2011
  • In order to develop new protein carrier replacing poly(DL-lactic acid-co-glycolic acid) (PLGA) microspheres, succinylated pullulan acetate (SPA) was investigated to fabricate a long term protein delivery carrier. SPA microspheres loaded with lysozyme (Lys) as a model protein drug were prepared by a water/oil/water (W/O/W) double emulsion method. An acidity test of SPA copolymers after hydrolysis was performed to estimate the change of protein stability during releasing proteins from the microspheres. There was no pH change of SPA copolymers, but pH of PLGA polymers after hydrolysis was significantly decreased to around pH 2, indicating that the long-term stability of proteins released from SPA microspheres can be guaranteed. Loading efficiency of proteins into SPA microspheres was three times higher than those into conventional PLGA microspheres, indication of inducing stronger charge interaction between proteins and succinyl groups in SPA microspheres. Although initial burst behaviors were monitored in Lys-loaded SPA microspheres due to relatively strong hydrophilic succinyl segments in SPA microspheres, initial burst issues would be circumvented if the ratio of charge density of succinyl moieties and hydrophobic acetate groups is harmonically controlled. Therefore, in this study, a new attempt of protein delivery system was made and functional SPA was successfully confirmed as a new protein carrier.

Development of Protein Delivery System using Pullulan Acetate Microspheres (PAM) (플루란 아세테이트 미립구를 이용한 단백질 전달 시스템 개발)

  • Na, Kun;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.115-121
    • /
    • 2006
  • The aim of this study was to develop new protein/peptide depot system instead of poly(DL-lactic acid-coglycolic acid) (PLGA) microspheres. Pullulan was chemically modified by the addition of acetic anhydride (pullulan acetate; PA) and then investigated as new depot system for protein/peptide delivery. PA microspheres (PAM) with lysozyme as a model protein were prepared by w/o/w double emulsion method. The microspheres had a mean size of 10-50 mm with a spherical shape. The size distributions reduced with increasing the degree of acetylation. The loading efficiency of lysozyme was also increased. Lysozyme aggregation behavior in the microsphere was monitored to estimate the change of protein stability during preparation step. The ratios of protein aggregation in PAMs are lower than that of PLGA microsphere, in particular, PA 5 showed lowest as about 16%. The result indicated that the increase of acetylation suppressed the aggregation of protein. The release profiles of lysozyme from PAMs were significantly different. High acetylation effectively improved lysozyme release kinetics by reducing initial burst release and extending continuous release over a period of time. To check the effect of preservation for structural stability of lysozyme, the activity of lysozyme released from PA 5 was also observed. The activity of lysozyme was maintained almost 100% for 25 day. Therefore, PAM may become to a useful carrier for delivery of protein/peptide drugs, if it will be supported by biocompatibility and biodegradability results.

Improving Oxygenation in the Murine Tumors by a perfluorochemical Emulsion (Fluosl-DA $20\%$ (Carbogen 흡입하에서 Fluosol-DA 20%의 투여가 이식동물 종양의 산소분압에 미치는 영향)

  • Lee Intae;Kim Gwi E.;Song Chang W.
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • In the present study, a perfluorchemical emulsion (Fluosol-DA $20\%$) did not alter $D_o\;and\;D_q$ values on cell survival curve, indicating that the lack of a direct effect of Fluosol-DA $20\%$ on cellular radiosensitivity in vitro. The effect of Fluosol-DA $20\%$ injection in combination with carbogen breathing was determined on the hypoxic cell fraction in SCK tumors. The hypoxic cell fraction in control SCK tumors was 0.39. This value decreased to 0.05 when the mice were i.v. injected with 12 ml/kg of Fluosol-DA $20\%$ in a carbogen atomosphere. The measured mean and median $PO_2$ values with a microelectrode in the control tumors was 9 mmHg and 4 mmHg, respectively. The treatment of the SCK tumors in the host mice with injected Fluosol-DA $20\%$ in combination with carbogen breathing increased the mean and median $PO_2$ values to 67 mmHg and 62 mmHg, respectively. Using carbogen breathing alone caused a moderate increase of tumor $PO_2$. But Fluosol-DA $20\%$ injection alone caused little change $PO_2$ in the tumor. It was concluded that the combination of Fluosol-DA injection and carbogen breathing is an effective means to improve oxygenation of tumors.

  • PDF

Optimization on the Stability of Coconut Oil in Water Emulsion Using Response Surface Methodology (반응표면분석법을 이용한 Coconut Oil 원료 O/W 유화액의 유화안정성 최적화)

  • Yoo, Bong-Ho;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.530-535
    • /
    • 2019
  • In this study, an optimization for the emulsification process with coconut oil and sugar ester was performed in conjunction with the central composite design (CCD) model of response surface methodology (RSM). Response values for the CCD model were the viscosity of the emulsion, mean droplet size, and emulsion stability index (ESI) after 7days from the reaction. On the other hand, the emulsification time, emulsification rate, and amount of emulsifier were selected as quantitative factors. According to the result of CCD, optimum conditions for the emulsification were as follows; the emulsification time of 22.63 min, emulsification speed of 6,627.41 rpm, and amount of emulsifier of 2.29 wt.%. Under these conditions, the viscosity, mean droplet size, and emulsion stability index (ESI) after 7 days from reaction were estimated as 1,707.56 cP, 1877.05 nm, and 93.23%, respectively. The comprehensive satisfaction of the CCD was indicated as 0.8848 with an average error of $1.2{\pm}0.1%$ from the experiment compared to that of the theoretical one. Overall, a very low error rate could be obtained when the central composite model was applied to the optimized coconut oil to water emulsification.

Nanoemulsions: a Novel Vehicle for Cosmetics (나노에멀젼: 화장품을 위한 새로운 제형)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • This review describes several kinds of emulsification methods for nanoemulsions and the application of nanoemulsions. Nanoemulsion droplet sizes fall typically in the range of 20 ~200 nm and show narrow size distributions. Although most of the publications on either oil-in-water (O/W) or water-in-oil (W/O) nanoemulsions have reported their formation by dispersion or high-energy emulsification methods, an increased interest is observed in the study of nano-emulsion formation by condensation or low-energy emulsification methods based on the phase transitions that take place during the emulsification process. Phase behaviour studies have shown that the size of the droplets is governed by the surfactant phase structure (bicontinuous microemulsion or lamellar) at the inversion point induced by either temperature or composition. Studies on nanoemulsion formation by the phase inversion temperature (PIT) method have shown a relation between minimum droplet size and complete solubilization of the oil in a microemulsion bicontinuous phase independently of whether the initial phase equilibrium is single or multiphase. Due to their small droplet size nanoemulsions possess stability against sedimentation or creaming with Ostwald ripening forming the main mechanism of nanoemulsion breakdown. An application of nanoemulsions is the preparation of nanoparticles using a polymerizable monomer as the disperse phase where nanoemulsion droplets act as nanoreactors, cosmetics and controlled drug delivery. In this review, we mainly focus on the cosmetics.

Natural Oleosomes Loading Emulsion Technology -Loading Oleosomes as Delivery Systems for Improved Cosmetic Efficacies- (천연 Oleosomes를 이용한 에멀젼 기술)

  • Tang, Diana;Guth, Jack
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.3 s.58
    • /
    • pp.149-152
    • /
    • 2006
  • Natural safflower oleosomes are small ($1{\sim}3{\mu}m$) spherical shaped "reservoir", inside which the seed stores triglycerides for use as a future energy source. The surface of the oleosome is covered with a high molecular weight ($20{\sim}24$ KDa) oleosin protein which has been demonstrated to have emulsification properties. Traditionally, oleosomes from oil bearing seeds such as safflower were simply crushed to liberate the oil within. Our patented DermaSphere technology allows for the isolation of oleosomes in the intact state. Once isolated, these materials can be used in skin care formulations to deliver the emolliency, occlusivity, and anti-oxidant effects typically associated with safflower oil. However, because of the presence of the emulsifying oleosin protein covering the spherical oil body, oleosomes have self-emulsification property as well as can emulsify other oil phase in typical oil-in-water (O/W) emulsion. The oleosomes can literally serve as the entire non-active portion of the oil phase of a typical skin care product. Most importantly, natural oleosomes can be loaded with other oil-soluble active materials and can therefore be used as delivery systems for improved cosmetic efficacies. Oleosomes can be loaded with various actives, such as fragrances, vitamins, inset repellents, and UV chromophores. The loaded oleosomes can be utilized to either protect the active ingredients within the formulation itself or to allow for control release of those actives over time.

Effect of Ratio of Polyoxalate/PLGA Microspheres on the Release Behavior of Zaltoprofen (Polyoxalate 및 PLGA 미립구의 혼합 비율별에 따른 Zaltoprofen의 방출거동)

  • Lee, Jung Keun;Kim, Kyoung Hee;Kim, Young Lae;Park, Guk Bin;Kim, Min Jeong;Kang, Su Ji;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Zaltoprofen, a propionic acid derivative non-steroidal anti-inflammatory drug, was known to have powerful inhibitory effects on acute, subacute and chronic inflammation. For initial release and sustained release, the microspheres were prepared using an emulsion-solvent evaporation method like an O/W emulsion method with varying the ratio of zaltoprofen-loaded polyoxalate (POX)/PLGA micropheres. The morphology of the microspheres was confirmed by scanning electron microscopy. The crystallinity of microspheres was analyzed by X-ray diffraction and differential scanning calorimeter. Fourier transform infrared spectroscopy was used to analyze the chemical structure of microspheres. The increased ratio of POX microspheres affected the initial drug release, and the sustained release of drug was influenced by ratio of PLGA microspheres. In this study, the initial release behavior of zaltoprofen can be controlled by the ratio of POX/PLGA microspheres.

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works (삼천포화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.6
    • /
    • pp.97-105
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ø70mm on the calcalious sand stone (soft-moderate-semi hard Rock). The total numbers of fire blast were 88 round. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagation Law in Blasting Vibration (Equation omitted) where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum Charge per delay-period of eighit milliseconds o. more(kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D / W$^n$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over 100m distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30 ‥‥‥under 100m ‥‥‥V=41(D/$^3$√W)$\^$-1.41/ ‥‥‥A Over 100 ‥‥‥‥under 100m ‥‥‥V=121(D/$^3$√W)$\^$-1.56/ ‥‥‥B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

Synthesis of Surface Active Properties of Destructible Surfactants with 1,3-Dioxane (1,3-디옥산을 함유한 분해성 계면활성제의 합성의 및 계면 특성)

  • Kim, Chi-Hoi;Roh, Yun-Chan;Kim, Yu-Ok;Nam, Kie-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.61-71
    • /
    • 1996
  • In acid-catalyzed acetal cyclization of long aliphatic aldehydes($R=n-C_7H_{15}$ ; $n-C_9H_{19}$ ; $n-C_{11}H_{23}$) with 1,1,1-tris(hydroxymethyl)propane, 2-alkyl-5-hydroxymethyl-5-ethyl-1,3-dioxanes were obtained. The final products, sodium 2-alkyl-5-(sulfonatedpropylethermethyl)-5-ethyl-1,3-propanesultion in the presence of sodium hydride. These compounds were a new group of destructible surfactants which were readily hydrolyzed and oxidized in natural water reservoirs. Physical properties of these new compounds involved some surface properties such as Krafft point(Kp), critical micelle concentration(cmc), surface tension of aqueous solutions near cmc(${\gamma}_{min}$), foaming power, emulsion power and hydrolysis properties were determined. The destructible surfactants containing 1,3-dioxane ring were synthesized to about $85{\pm}5.5%$ yield. The cmc values of the compounds by ring method were assumed to $0.5{\sim}5.0{\times}10^{-3}mol/L$ range and surface tensions at cmc were $29.5{\sim}33.0dyne/cm$ respectively at $25^{\circ}C$. The foaming power and foam stability were $170{\sim}230mm$ and $52{\sim}135mm$ respectively at $1{\times}10^{-2}mol/L$, foam was occurred rarely below $1{\times}10^{-3}mol/L$. The emulsion property of liquid paraffin was better than that of soybean oil. For hydrolysis property with ph and time, these compounds were decomposed within about 200minutes at $ph1{\sim}2$. Hopefully these compounds are expected to be a good O/W emulsifier that have decomposability in acid and may be used in the process which do not need foaming.

Preparation of Cosmeceuticals Containing Flos Sophorae Immaturus Extracts: Optimization Using Box-Behnken Design Model (회화나무꽃 추출물이 함유된 Cosmeceuticals의 제조: Box-Behnken 설계모델을 이용한 최적화)

  • Yoo, Bong-Ho;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.404-410
    • /
    • 2020
  • In this study, the stability criteria of cosmeceuticals emulsion containing Flos Sophorae Immaturus extracts was established using the Box-Behnken design model (BBD-RSM). As optimization conditions of the emulsification using the BBD-RSM, the amount of surfactant and additive, and emulsification time and speed were used as quantitative factors while mean droplet size (MDS), viscosity and emulsion stability index (ESI) were used as reaction values. According to the result of BBD-RSM, optimum conditions for the emulsification were as follows; the emulsification time and speed of 17.8 min and 5505 rpm, respectively and amounts of the emulsifier and additive of 2.28 and 1.05 wt.%, respectively. Under these conditions, the MDS, viscosity, and ESI after 7 days from the reaction were estimated as 1875.5 nm, 1789.7 cP, and 93.8%, respectively. The average error value from our actual experiments for verifying the conclusions was below 5%, which is mainly due to the fact that the BBD-RSM was applied to the optimized cosmeceuticals emulsification.