• Title/Summary/Keyword: O(N)

Search Result 13,312, Processing Time 0.045 seconds

Influence of N Fertilization Level, Rainfall, and Temperature on the Emission of N2O in the Jeju Black Volcanic Ash Soil with Soybean Cultivation (콩 재배 화산회토양에서 질소시비 수준 및 강우, 온도 환경 변화에 따른 아산화질소 배출 특성)

  • Yang, Sang-Ho;Kang, Ho-Jun;Lee, Shin-Chan;Oh, Han-Jun;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.451-458
    • /
    • 2012
  • This study was conducted to investigate the characteristic factors which have been influenced on nitrous oxide ($N_2O$) emissions related to the environment change of nitrogen application level, rainfall and temperature during the soybean cultivation at black volcanic ash soil from 2010 to 2011. During the soybean cultivation, the more amount of nitrogen fertilizer applied, $N_2O$ emissions amounts were released much. $N_2O$ emissions with the cultivation time were released much at the first and middle of cultivation with heavy rainfall, but it was released very low until the end of cultivation and drought season. $N_2O$ emissions mainly were influenced by the rainfall and soil water content. The correlation ($r$) with $N_2O$ emissions, soil water, soil temperature and soil EC in 2010 were very significant at $0.4591^{**}$, $0.6312^{**}$ and $0.3691^{**}$ respectively. In 2011, soil water was very significant at $0.4821^{**}$, but soil temperature and soil EC were not significant at 0.1646 and 0.1543 respectively. Also, $NO_3$-N and soil nitrogen ($NO_3-N+NO_4-N$) were very significant at $0.6902^{**}$ and $0.6277^*$ respectively, but $NO_4$-N was not significant at 0.1775. During the soybean cultivation, the average emissions factor of 2 years released by the nitrogen fertilizer application was presumed to be 0.0202 ($N_2O$-N kg $N^{-1}\;kg^{-1}$). This factor was higher about 2.8 and 2 times than the Japan's (0.0073 $N_2O$-N kg $N^{-1}\;kg^{-1}$) value and 2006 IPCC guideline default value (0.0100 $N_2O$-N kg $N^{-1}\;kg^{-1}$) respectively.

Ultraviolet LEDs using n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction (n-ZnO/i-ZnO/p-GaN:Mg 이종접합을 이용한 UV 발광 다이오드)

  • Han, W.S.;Kim, Y.Y.;Kong, B.H.;Cho, H.K.;Lee, J.H.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.50-50
    • /
    • 2008
  • ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.

  • PDF

COMBINATORIAL PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL $O^{n,3}_d(q)$

  • Lee, Jae-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.455-462
    • /
    • 2012
  • The cyclic group $Cn={\langle}(12{\cdots}n){\rangle}$ acts on the set ($^{[n]}_k$) of all $k$-subsets of [$n$]. In this action of $C_n$ the number of orbits of size $d$, for $d|n$, is $$O^{n,k}_d=\frac{1}{d}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})(^{n/s}_{k/s})$$. Stanton and White[7] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)=\frac{1}{[d]_{q^{n/d}}}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})[^{n/s}_{k/s}]{_q}^s$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a combinatorial proof for the positivity of coefficients of the orbit polynomial $O^{n,3}_d(q)$.

The Crystal and Molecular Structure of Sodium Sulfisoxazole hexahydrate (Sodium Sulfisoxazole Hexahydrate의 결정 및 분자구조와 수소결합에 관한 연구)

  • Young Ja Park;Chung Hoe Koo
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.19-34
    • /
    • 1976
  • The crystal structure of sodium sulfisoxazole hexahydrate, $C_{11}H_{12}N_3O_3SNa{\cdot}6H_2O$,has been determined by X-ray diffraction method. The compound crystallizes in the monoclinic space group $$P2_1}c$$ with a = 15.68(3), b = 7.70(2), c = 17.94(4)${\AA}$, ${\beta}$ = $118(2)^{\circ}$ and Z = 4. A total of 1717 observed reflections were collected by the Weissenberg method with $CuK{\alpha}$ radiation. Structure was solved by heavy atom method and refined by block-diagonal least-squares methods to the R value of 0.14. The conformational angle formed by the S-C(l) bond with that of N(2)-C(7), when the projection in taken along the S-N(2), is $73^{\circ}.$ The benzene ring is planar and makes an angle of $60^{\circ}$ with the plane of the isoxazole ring, which is also planar. The sodium atom has a distorted octahedral coordination of N(l) and five oxygen atoms from hydrate molecules. Sodium sulfisoxazole hexahydrate shows fourteen different hydrogen bondings in the crystal. These are six $O-H{\cdots}O-H bonds, three $O-H{\cdots}O$ bonds, two $O-N{\cdots}N,$ one $N-H{\cdots}O,O-H{\cdots}N,N-H{\cdots}O-H$ bond, with the distances in the range of 2.71 to $3.04{\AA}.$.

  • PDF

Rank and Select Functions for Succinct Representation of Two-Dimensional Arrays (2차원 배열의 Succinct 표현을 위한 Rank 및 Select 함수)

  • Park, Chi-Seong;Kim, Min-Hwan;Kim, Dong-Kyue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.511-515
    • /
    • 2006
  • 집합이나 배열의 원소, 트리의 노드, 그래프의 정점과 간선 등과 같은 이산 객체는 일반적으로 주기억장치의 논리적 주소 값과 같은 정수로 표현되어 왔다. Succinct 표현은 이와 같은 n개의 이산 객체를 O(n) 비트에 표현하는 방법이다. 대부분의 succinct 표현은 rank와 select라는 함수를 기본적으로 사용하며, 다양한 연구들에 의해 현재 rank와 select 함수는 o(n)?? 비트만을 사용하여 ??O(1) 시간에 수행될 뿐만 아니라, 실제로도 실용적으로 구현되었다. 본 논문에서는 $n{\times}n$ 배열, 즉 2차원 비트 스트링에 대한 Rank 및 Select 함수를 새롭게 정의한다. 또한, $O(n^2log\;n)$ 비트를 사용하여 O(1) 시간에 Rank 질의를 수행하고 O(log n) 시간에 Select 질의를 수행하는 방법과, 보다 적은 $O(n^2)$ 비트를 사용하면서 O(log n) 시간에 Rank 질의를 수행하고 $O(log^2\;n)$ 시간에 Select 질의를 수행하는 방법을 제안한다. 본 논문에서 정의하는 2차원 배열 상의 Rank와 Select 함수는 이미 개발된 2차원 상의 써픽스 트리 등을 기반으로 향후 개발될 2차원 상의 압축된 인덱스 자료구조나 이미지 프로세싱 등에 유용하게 사용된다.

  • PDF

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

Mechanical Milling of Lithium with Metal Oxide and its Reactivity with Gases

  • Yokoi, Tomomichi;Yamasue, Eiji;Okumura, Hideyuki;Ishihara, Keiichi N.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.959-960
    • /
    • 2006
  • Li reacts with $N_2$ at room temperature. In order to activate Li, the mechanical milling of Li with stable metal oxide, namely, $Al_2O_3$ and MgO, using a high energy vibrating ball mill was performed. In the case of Li-MgO system, it reacts with $N_2$, but hardly reacts with $O_2$. The reaction with $N_2$ generally produces $Li_3N$, while for some vigorous reactions the $Mg_3N_2$ is produced as the major phases. In the case of $Li-Al_2O_3$ system, reactivities with both $N_2$ and $O_2$ are high. The difference is explained in terms of the reaction mechanism and the Li state.

  • PDF

The Synthesis of Sodium Titanate by the Ion Exchange of H+/Na+ from Hydrous Titanium Dioxide and its Phase Transition (Hydrous Titanium Dioxide로부터 H+/Na+의 이온교환에 의한 티탄산나트륨의 합성 및 성전이)

  • Lee, Jin-Sik;Song, Yon-Ho;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.585-590
    • /
    • 1998
  • Fibrous $Na_xTi_nO_{2n+1}$ whisker was prepared by $H^+/Na^+$ ion-exchange on layered hydrous titanium dioxide ($H_2Ti_4O_9{\cdot}nH_2O$). The ion-exchange reaction was proceeded at 0.5~2.0 M NaOH solution. In the ion-exchange at 2.0 M NaOH solution, 73% of sodium was exchanged and the prepared $Na_xTi_nO_{2n+1}$ whisker was a fibrous crystal of about $10{\sim}20{\mu}m$ of length and about $0.7{\mu}m$ of diameter. The phase transition of the ion-exchange phases identified by the thermal analysis. The result showed that the $Na_xTi_nO_{2n+1}$ whisker was decomposed into $Na_2Ti_6O_{13}$ and $TiO_2$ in the temperature of $200{\sim}600^{\circ}C$.

  • PDF

Effect of B2O3 Additives on GaN Powder Synthesis from GaOOH (GaOOH로부터 GaN 분말의 합성에 미치는 B2O3의 첨가효과)

  • Song, Changho;Shin, Dongwhee;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.104-111
    • /
    • 2013
  • In this study, GaN powders were synthesized from gallium oxide-hydroxide (GaOOH) through an ammonification process in an $NH_3$ flow with the variation of $B_2O_3$ additives within a temperature range of $300-1050^{\circ}C$. The additive effect of $B_2O_3$ on the hexagonal phase GaN powder synthesis route was examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transformation infrared transmission (FTIR) spectroscopy. With increasing the mol% of $B_2O_3$ additive in the GaOOH precursor powder, the transition temperature and the activation energy for GaN powder formation increased while the GaN synthesis limit-time ($t_c$) shortened. The XPS results showed that Boron compounds of $B_2O_3$ and BN coexisted in the synthesized GaN powders. From the FTIR spectra, we were able to confirm that the GaN powder consisted of an amorphous or cubic phase $B_2O_3$ due to bond formation between B and O and the amorphous phase BN due to B-N bonds. The GaN powder synthesized from GaOOH and $B_2O_3$ mixed powder by an ammonification route through ${\beta}-Ga_2O_3$ intermediate state. During the ammonification process, boron compounds of $B_2O_3$ and BN coated ${\beta}-Ga_2O_3$ and GaN particles limited further nitridation processes.

The Impact of NiO on the Electrical Characteristics of AlGaN/GaN MOSHFET (NiO 게이트 산화막에 의한 AlGaN/GaN MOSHFET의 전기적 특성 변화)

  • Park, Yong Woon;Yang, Jeon Wook
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.511-516
    • /
    • 2021
  • The electrical characteristics of AlGaN/GaN/HEMT and MOSHFETs with NiO were studied. The threshold voltage of NiO MOSHFET revealed positive shift of +1.03 V than the -3.79 V of HEMT and negative shift of -1.73 V for SiO2 MOSHFET. Also, NiO MOSHFET showed better linearity in drain current corresponding to gate voltage and higher transconductance at positive gate voltage than the others. The response of gate pulse with base voltage of -5 V was different for both transistors as HEMT showed 20 % drain current decrease at the frequency range of 0.1 Hz~10 Hz and NiO MOSHFET decreased continuously above 10 Hz.