• Title/Summary/Keyword: O&M Cost

Search Result 332, Processing Time 0.028 seconds

Powder Metallurgy for Light Weight and Ultra-Light Weight Materials

  • Kieback, B.;Stephani, G.;Weiβgarber, T.;Schubert, T.;Waag, U.;Bohm, A.;Anderson, O.;Gohler, H.;Reinfried, M.
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.383-389
    • /
    • 2003
  • As in other areas of materials technology, the tendency towards light weight constructions becomes more and more important also for powder metallurgy. The development is mainly driven by the automotive industry looking for mass reduction of vehicles as a major factor for fuel economy. Powder metallurgy has to offer a number of interesting areas including the development of sintered materials of light metals. PM aluminium alloys with improved properties are on the way to replace ferrous pars. For high temperature applications in the engine, titanium aluminide based materials offer a great potential, e.g. for exhaust valves. The PM route using elemental powders and reactions sintering is considered to be a cost effective way for net shape parts production. Furthermore it is expected that lower costs for titanium raw materials coming from metallurgical activities will offer new chances for sintered parts with titanium alloys. The field of cellular metals expands with the hollow sphere technique, that can provide materials of many metals and alloys with a great flexibility in structure modifications. These structures are expected to be used in improving the safety (crash absoption) and noise reduction in cars in the near future and offer great potential for many other applications.

Effect of Temperature and Reactants Flow Rate on the Synthesis Gas Production in a Fixed Bed Reactor (유동층 반응기에서 합성가스 생성에 미치는 반응온도와 반응물 유속의 영향)

  • Kim, Sang-Bum;Kim, Young-Kook;Hwang, Jae-Young;Kim, Myung-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.225-230
    • /
    • 2004
  • Synthesis gas is a high valued compound as a basic chemicals at various chemical processes. Synthesis gas is mainly produced commercially by a steam reforming process. However, the process is highly endothermic so that the process is very energy-consuming process. Thus, this study was carried out to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst in a fluidized bed reactor. With the fluidized bed reactor, $CH_4$ conversion was 91%, and Hz and CO selectivities were both 98% at 850$^{\circ}C$ and total flow rate of 100 mL/min. These values were higher than those of fixed bed reactor. From this result, we found that with the use of the fluidized bed reactor it was possible to avoid the disadvantage of fixed bed reactor (explosion) and increase the productivity of synthesis gas.

Quantum Packet for the Next Generation Network/ISDN3

  • Lam, Ray Y. W.;Chan, Henry C. B.;Chen, Hui;Dillon, Tharam S.;Li, Victor O. K.;Leung, Victor C. M.
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.316-330
    • /
    • 2008
  • This paper proposes a novel method for transporting various types of user traffic effectively over the next generation network called integrated services digital network 3 (ISDN3) (or quantum network) using quantum packets. Basically, a quantum packet comprises one or more 53-byte quanta as generated by a "quantumization" process. While connection-oriented traffic is supported by fixed-size quantum packets each with one quantum to emulate circuit switching, connectionless traffic (e.g., IP packets and active packets) is carried by variable-size quantum packets with multiple quanta to support store-and-forward switching/routing. Our aim is to provide frame-like or datagram-like services while enabling cell-based multiplexing. The quantum packet method also establishes a flexible and extensible framework that caters for future packetization needs while maintaining backward compatibility with ATM. In this paper, we discuss the design of the quantum packet method, including its format, the "quantumization" process, and support for different types of user traffic. We also present an analytical model to evaluate the consumption of network resources (or network costs) when quantum packets are employed to transfer loss-sensitive data using three different approaches: cut-through, store-and-forward and ideal. Close form mathematical expressions are obtained for some situations. In particular, in terms of network cost, we discover two interesting equivalence phenomena for the cut-through and store-and-forward approaches under certain conditions and assumptions. Furthermore, analytical and simulation results are presented to study the system behavior. Our analysis provides valuable insights into the. design of the ISDN3/quantum network.

Design of 250-Mbps 10-Channel CMOS Optical Receiver Away for Parallel Optical Interconnection (병렬 광 신호 전송을 위한 250-Mbps 10-채널 CMOS 광 수신기 어레이의 설계)

  • Kim, Gwang-O;Choe, Jeong-Yeol;No, Seong-Won;Im, Jin-Eop;Choe, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.25-34
    • /
    • 2000
  • This paper describes design of a 250-Mbps 10-channel optical receiver array for parallel optical interconnection with the general-purpose CMOS technology The optical receiver is one of the most important building blocks to determine performance of the parallel optical interconnection system. The chip in CMOS technology makes it possible to implement the cost-effective system also. Each data channel consists of analog front-end including the integrated photo-detector and amplifier chain, digital block with D-FF and off-chip driver. In addition, the chip includes PLL (Phase-Lock Loop) for synchronous data recovery. The chip was fabricated in a 0.65-${\mu}{\textrm}{m}$ 2-poly, 2-metal CMOS technology. Power dissipation of each channel is 330㎽ for $\pm$2.5V supply.

  • PDF

Optimization of annealing conditions in oxide-precursor-based MOD process for YBCO thin films (산화물 전구체를 이용한 YBCO 박막제조에서 열처리조건의 최적화)

  • Heo S. Y.;Kim Y. K.;Yoo J. M.;Ko J. W.;Hong G. W.;Lee H. G.;Yoo S. I.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.118-123
    • /
    • 2005
  • A low cost YBCO oxide powder was employed as a starting precursor for MOD process. YBCO oxide is advantageous over metal acetates or TFA salts which are popular starting precursors for conventional MOD-TFA process because that YBCO oxide precursor is cheap and easy to control molar ratio. YBCO thin films were prepared by this oxide-precursor-based MOD process and annealing condition was optimized. The YBCO thin film annealed at below $780^{\circ}C$ shows no transport $I_c$ and poor microstructure. Raman spectroscopic study of YBCO thin film indicates that YBCO thin film prepared at below $780^{\circ}C$ contains a number of imperfections such as non-superconducting $BaCuO_2$ phase, cation disorder, etc. However, the YBCO thin film treated at above $800^{\circ}C$ shows improvement in microstructure and current transport properties. This research was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea.

  • PDF

Synthesis of Spindle Shape α-FeOOH Nanoparticle from Ferrous(II) Sulfate Salt (황산 제1철을 이용한 방추형 괴타이트 나노 입자의 합성)

  • Han, Yang-Su;You, Hee-Joun;Moon, Ji-Woong;Oh, You-Keun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.722-728
    • /
    • 2005
  • A wet-chemical route was utilized to obtain nanosized crystalline goethite ($\alpha$-FeOOH) particle, which was known as an oxidation catalyst in reducing carbon monoxide (CO) and dioxine during incineration. A cost-effective $FeSO_4{\cdot}7H_2O$ was used as starting raw material and a successive process of hydrolysis-oxidation was utilized as synthetic method. The effects of the initial $Fe^{2+}$ concentration, hydrolysis time and oxidation period on the crystalline phase and particle characteristics were systematically investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and BET analyses. It was found that the spindle-shaped crystalline $\alpha$-FeOOH particle with the width of 70 nm and the length of 200 nm could be obtained successfully when the initial concentration of 1.5 M, hydrolysis time of 4h, and oxidation period of 10 h, respectively. In addition, it was observed that the spindle-shaped $\alpha$-FeOOH particle consisted of nano-sized primary crystallites of $30\~50\;nm$, which were de-agglomerated into individual particle and successively re­agglomerated into spherical or irregular-shaped agglomerates beyond certain periods in the hydrolysis and oxidation process.

A study on improving the surface morphology of recycled wafer forsolar cells using micro_blaster (Micro blaster를 이용한 태양전지용 재생웨이퍼의 표면 개선에 관한 연구)

  • Lee, Youn-Ho;Jo, Jun-Hwan;Kim, Sang-Won;Kong, Dae-Young;Seo, Chang-Taeg;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.291-296
    • /
    • 2010
  • Recently, recycling method of waste wafer has been an area of solar cell to cut costs. Micro_blasting is one of the promising candidates for recycling of waste wafer due to their extremely simple and cost-effective process. In this paper, we attempt to explore the effect of micro_blasting and DRE(damage removal etching) process for solar cell. The optimal process conditions of micro_blasting are as follows: $10{\mu}m$ sized $Al_2O_3$ powder, jetting pressure of 400 kPa, and scan_speed of 30 cm/s. And the particles formed on micro_blasted wafer were removed by DRE precess which was performed by using HNA(HF/$HNO_3$/$CH_3COOH$) and TMAH(tetramethyl ammonium hydroxide). Structural analysis was done using a-step and the XRD patterns.

Multiple-Point-Diffraction Interferometer : Error Analysis and Calibration (거친 표면 형상측정을 위한 점광원 절대간섭계의 오차해석과 시스템 변수의 보)

  • Kim, Byoung-Chang;Kim, Seung-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.361-365
    • /
    • 2005
  • An absolute interferometer system with multiple point-sources is devised for tile 3-D measurement of rough surface profiles. The positions of the point sources are determined to be the system parameters that influence the measurement accuracy, so they are calibrated precisely prior to performing actual measurements. For the calibration, a CCD camera composed of a two-dimensional array of photo-detectors was used. Performing optimization of the cost function constructed with phase values measured at each pixel on the CCD camera, the position coordinates of each point source is precisely determined. Measurement results after calibration performed for the warpage inspection of chip scale packages (CSPs) demonstrate that the maximum discrepancy is 9.8 mm with a standard deviation o( 1.5 mm in comparison with the test results obtained by using a Form Taly Surf instrument.

Modelling and packed bed column studies on adsorptive removal of phosphate from aqueous solutions by a mixture of ground burnt patties and red soil

  • Rout, Prangya R.;Dash, Rajesh R.;Bhunia, Puspendu
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.231-251
    • /
    • 2014
  • The present study examines the phosphate adsorption potential and behavior of mixture of Ground Burnt Patties (GBP), a solid waste generated from cooking fuel used in earthen stoves and Red Soil (RS), a natural substance in fixed bed column mode operation. The characterization of adsorbent was done by Proton Induced X-ray Emission (PIXE), and Proton Induced ${\gamma}$-ray Emission (PIGE) methods. The FTIR spectroscopy of spent adsorbent reveals the presence of absorbance peak at $1127cm^{-1}$ which appears due to P = O stretching, thus confirming phosphate adsorption. The effects of bed height (10, 15 and 20 cm), flow rate (2.5, 5 and 7.5 mL/min) and initial phosphate concentration (5 and 15 mg/L) on breakthrough curves were explored. Both the breakthrough and exhaustion time increased with increase in bed depth, decrease in flow rate and influent concentration. Thomas model, Yoon-Nelson model and Modified Dose Response model were used to fit the column adsorption data using nonlinear regression analysis while Bed Depth Service Time model followed linear regression analysis under different experimental condition to evaluate model parameters that are useful in scale up of the process. The values of correlation coefficient ($R^2$) and the Sum of Square Error (SSE) revealed the Modified Dose Response model as the best fitted model to the experimental data. The adsorbent mixture responded effectively to the desorption and reusability experiment. The results of this finding advocated that mixture of GBP and RS can be used as a low cost, highly efficient adsorbent for phosphate removal from aqueous solution.

Influence of stiffened hangers on the structural behavior of all-steel tied-arch bridges

  • Garcia-Guerrero, Juan M.;Jorquera-Lucerga, Juan J.
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.479-495
    • /
    • 2019
  • In tied-arch bridges, the way the arch and the deck are connected may become crucial. The deck is usually suspended from hangers made out of steel pinned cables capable of resisting axial forces only. However, a proper structural response may be ensured by fixing and stiffening the hangers in order to resist, additionally, shear forces and bending moments. Thus, this paper studies the effect of different pinned and stiffened hanger arrangements on the structural behavior of the tied-arch bridges, with the intention of providing designers with useful tools at the early steps of design. Longitudinally and transversally stiffened hangers (and the effect of hinges at the hangers and their locations) are studied separately because the in-plane and the out-of-plane behavior of the bridge are uncoupled due to its symmetry. As a major conclusion, regarding the in-plane behavior, hangers composed of cables (either with vertical, $Nielsen-L\ddot{o}hse$ or network arrangements) are recommended due to its low cost and ease of erection. Alternatively, longitudinally stiffened hangers, fixed at both ends, can be used. Regarding the out-of-plane behavior, and in addition to three-dimensional arrangements of cables, of limited effectiveness, transversally stiffened hangers fixed at both ends are the most efficient arrangement. A configuration almost as efficient and, additionally, cheaper and easier to build can be achieved by locating a hinge at the end corresponding to the most flexible structural element (normally the arch). Its efficiency is further improved if the cross-section tapers from the fixed end to the pinned end.