• 제목/요약/키워드: Nutrients dynamics

검색결과 126건 처리시간 0.026초

Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal Communities in the Pacific Ocean

  • Maki, Teruya;Ishikawa, Akira;Kobayashi, Fumihisa;Kakikawa, Makiko;Aoki, Kazuma;Mastunaga, Tomoki;Hasegawa, Hiroshi;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권3호
    • /
    • pp.157-163
    • /
    • 2011
  • Atmospheric aerosol deposition caused by Asian dust (KOSA) events provide nutrients, trace metals, and organic compounds over the Pacific Ocean that enhance ocean productivity and carbon sequestration and, thus, influence the atmospheric carbon dioxide concentrations and climate. Using dust particles obtained from the snow layers on Mt. Tateyama and the surface sand of Loess Plateau in incubation experiments with natural seawater samples on a shipboard, we demonstrate that dust-particle additions enhanced the bacterial growth on the first day of incubation. Gram-positive bacterial group and alpha-proteobacteria were specifically detected form seawater samples including the mineral particles. Although the remarkable dynamics of trace elements and nutrients depend on dust-particle additions, it is possible that organic compounds present in the mineral particles or transported microbial cells could also contribute to an increase in the quantities of bacteria. The chlorophyll concentrations at fractions of every size indicated a similar pattern of change between the seawater samples with and without the dust-particle additions. In contrast, the chlorophyll measurement using submersible fluorometer revealed that the dynamics of phytoplankton composition were influenced by the dust-particles treatments. We conclude that the phytoplankton that uses the bacterial products would increase their biomass. We show that KOSA deposition can potentially alter the structures of bacterial communities and indirectly influence the patterns of marine primary production in the Pacific Ocean.

Weight Loss and Nutrients Dynamics during the Decomposition of Fine Roots

  • Mun, Hyeong-Tae;Pyo, Jae-Hoon;Shin, Chang-Hwan;Namgung, Jeong;Kim, Jeong-Hee
    • The Korean Journal of Ecology
    • /
    • 제25권1호
    • /
    • pp.41-44
    • /
    • 2002
  • Weight loss, N and P dynamics during decomposition of fine roots (<2mm) of alder(Alnus japonica), oak (Quercus acutissima) and pitch pine(Pinus rigida) were studied for 33 months in Kongju, Korea. After 33 months, remaining weight of fine roots of alder, oak and pitch pine was 29.2%, 47.7% and 53.4% of the initial weight, respectively. The decomposition rate constant (k) for alder, oak and pitch pine was 0.448 $yr^1$, 0.269 $yr^1$, 0.228 $yr^1$, respectively. Initial concentration of N and P in fine roots was 10.32mg/g and 0.69mg/g for alder, 6.20mg/g and 0.37mg/g for oak and 7.26mg/g and 0.44mg/g for pitch pine, respectively. Initial concentration of N and P in alder were higher than those in oak and pitch pine. After 33 months, remaining N and P in fine roots was 39.5$\%$ and 31.8$\%$ for alder, 59.4$\%$ and 57.8$\%$ for oak, 63.0$\%$ and 83.4$\%$ for pitch pine, respectively. Decomposition rate and the rate of N released from decomposing fine roots was positively correlated with the initial N concentration of the fine roots.

Temporal Variation of Phytoplankton Community Related to Water Column Structure in the Korea Strait

  • Lee, Yong-Woo;Park, Hyun-Je;Choy, Eun-Jung;Kim, Yun-Sook;Kang, Chang-Keun
    • Ocean and Polar Research
    • /
    • 제32권3호
    • /
    • pp.321-329
    • /
    • 2010
  • Photosynthetic pigments, nutrients, and hydrographic variables were examined in order to elucidate the spatio-temporal variation of water column structure and its effect on phytoplankton community structure in the western channel of the Korea Strait in fall 2006 and spring 2007. High phytoplankton biomass in the spring was associated with high salinity, implying that nutrients were not supplied by coastal waters or the Yangtze-River Diluted water (YRDW) with low salinity. Expansion of the Korea Strait Bottom Cold Water (KSBCW) and a cold eddy observed during the spring season might enhance the nutrient supply from the subsurface layer to the euphotic zone. Chemotaxonomic examination showed that diatoms accounted for 60-70% of total biomass, followed by dinoflagellates. Nutrient supply by physical phenomena such as the expansion of the KSBCW and the occurrence of a cold eddy appears to be the controlling factors of phytoplankton community composition in the Korea Strait. Further study is needed to elucidate the mechanisms by which the KSBCW is expanded, and its role in phytoplankton dynamics.

The Relationship between the Sugar Preference of Bacterial Pathogens and Virulence on Plants

  • Ismaila Yakubu;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • 제39권6호
    • /
    • pp.529-537
    • /
    • 2023
  • Plant pathogenic bacteria colonize plant surfaces and inner tissues to acquire essential nutrients. Nonstructural sugars hold paramount significance among these nutrients, as they serve as pivotal carbon sources for bacterial sustenance. They obtain sugar from their host by diverting nonstructural carbohydrates en route to the sink or enzymatic breakdown of structural carbohydrates within plant tissues. Despite the prevalence of research in this domain, the area of sugar selectivity and preferences exhibited by plant pathogenic bacteria remains inadequately explored. Within this expository framework, our present review endeavors to elucidate the intricate variations characterizing the distribution of simple sugars within diverse plant tissues, thus influencing the virulence dynamics of plant pathogenic bacteria. Subsequently, we illustrate the apparent significance of comprehending the bacterial preference for specific sugars and sugar alcohols, postulating this insight as a promising avenue to deepen our comprehension of bacterial pathogenicity. This enriched understanding, in turn, stands to catalyze the development of more efficacious strategies for the mitigation of plant diseases instigated by bacterial pathogens.

보 건설 이후 영산강 보 구간에서의 질소계열 영양염류 및 식물플랑크톤 동태 (Characteristics of Nitro-nutrients and Phytoplankton Dynamics in the Yeongsan River after Weir Construction)

  • 서경애;나정은;류희성;김경현
    • 한국물환경학회지
    • /
    • 제34권4호
    • /
    • pp.423-430
    • /
    • 2018
  • Insomuch as it is important to manage water quality, from the perspective of water management, it is essential to understand the effect of the weirs on water quality and phytoplankton dynamics in various regions. The purpose of this study is to investigate the characteristics of nitro-nutrients, as well as occurrences and succession patterns of phytoplankton, in the river sections of the two weirs in the Yeongsan River for the five years (from 2012 to 2016) after the weir construction. In respect to this data, the average water temperature measured at the representative point in the section of the Seungchon Weir ($17.1^{\circ}C$) was higher than that of the Juksan Weir ($16.6^{\circ}C$) by comparison. By way of an analysis of this data, it was found that the water quality variables such as, organic matter, nitrogen nutrients and phosphorus nutrients were improved gradually during the period, but the degree of the improvement differs as noted and measured between the weirs. Under the circumstances, it is especially noted that the $NH_3-N$ concentration was higher for the point of the Seungchon Weir (2.204 mg/L) than that of the Juksan Weir (1.157 mg/L). This indicates that effluent as seen from sewage treatment plants and hydrological feature near the densely population area, could be the main cause for the incidence of water pollution in the upstream section of the Seungchon Weir. Additionally, the phytoplankton analysis showed that a relative abundance of diatoms and green algae were 56.9 % and 25.8 % respectively. However, it is noted that the cyanobacteria was measured lower as 10.7 %. Also, in the study sites cell density and occurrence frequency of cyanobacteria were relatively lower than compared to the same measurements noted in other rivers.

춘계와 하계의 영양염 농도와 그 구성비가 식물플랑크톤의 군집구조에 미치는 영향평가 (The Influence of Nutrients Concentration and the Ratio on Phytoplankton Community Structure during Late Spring and Early Summer in Sagami Bay, Japan)

  • 백승호;시모데신지;한명수;키쿠치토모히코
    • ALGAE
    • /
    • 제23권4호
    • /
    • pp.277-288
    • /
    • 2008
  • The relationship between nutrients and phytoplankton dynamics was investigated daily from 12 April to 22 July 2003 in Sagami Bay, Japan. According to multidimensional scaling (MDS) and cluster analysis, phytoplankton community was divided into four distinct groups. The first group was consisted of centric diatom species, such as Guinardia spp., Detonula spp., Letocylindrus danicus, Skeletonema costatum, Eucampia zodiacus and Chaetoceros spp.. The second and third clusters comprised mainly diatoms and dinoflagellates, respectively. The other cluster was restricted to the samples collected during the last sampling period when the rainfall and river discharge was frequently recorded. Canonical correspondence analysis (CCA) was applied to analyze four groups respectively, which focused on the effects of nutrients concentration and ratio on phytoplankton variations. Based on CCA analysis, most species of centric diatom were negatively correlated with DSi concentrations and Si/N ratio. Nutrients were strongly limited phytoplankton growth during the summer when the rainfall was not observed, whereas river discharge by rainfall and counterclockwise coastal currents (although the surface circulation pattern is often altered by Kuroshio Current, the counterclockwise coastal currents are generally dominant) has brought phytoplankton population accumulation and triggered the micoalgae growth in western part of the bay. Phosphorous (P) was strongly limited after significantly increases in the phytoplankton abundances. However, silicate (Si) was not a major limiting factor for phytoplankton production, since Si/DIN and Si/P ratio did not create any potential stoichiometric limitation. This indicates that high Si availability contributes favorably to the maintenance of diatom ecosystems in Sagami Bay.

낙엽의 분해과정에 따른 영양염류 및 화학적 구성원의 동태 (Dynamics of Nutrient and KDICical Constituents during Litter Decomposition)

  • Mun, hyeibg-Tae;Jae-Hoon Pyo
    • The Korean Journal of Ecology
    • /
    • 제17권4호
    • /
    • pp.501-511
    • /
    • 1994
  • Dynamics of nutrients, non-polar, water solubles, acid solubles and acid insolubles (lignin) in decomposing litter were investigated for 2 years in the oak, Quercus acutissima, and the pitch pine, Pinus rigida, stands in the vicinity of Kongju, Chungnam Province. Nitrogen and phosphorus conetrations in decomposing litter increased with time elapsed, however, potassium decreased rapidly within three months and then remined constant with time elapsed. Calcium concentration in needle litter during experimental period was lower than that of initial concentration in needle litter during experimental period was lower than that of initial concentration, and showed no significant variation with time elapsed. Calcium concentration in oak litter during the experimental period, however, were higher than that of initial concentration. Magnesium concentration in oak litter decreased repidly during six months, and then remaines constant thereafter. Annual amount of nitrogen, phosphorus, potassium, calcium and magnesium which returned to soil via litter decomposition in the oak and the pitch pine stands was $3.3g/m^2$ and $0.9g/m^2$ for N, $0.03g/m^2$ and $0.01g/m^2$ for P, $1.3g/m^2$ and $0.7g/m^2$ for K, $0.7g/m^2$ and $1.2g/m^2$ for Ca, $0.9g/m^2$ and $0.4g/m^2$ for Mg, respectively. Non-polar, and water- and acid-soluble fractions in decomposing litter decreased and lignin increased with time.

  • PDF

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • 생태와환경
    • /
    • 제49권2호
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

얕은 부영양 저수지에서의 식물플랑크톤 성장 역학 (Growth Kinetics of Phytoplankton in Shallow Eutrophic Reservoir)

  • 김호섭;황순진;공동수
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.550-555
    • /
    • 2008
  • This study was conducted to assess the growth characteristics of phytoplankton and to understand seasonal dynamics of phytoplankton in response to limiting nutrients in an agricultural reservoir from November 2002 to December 2003. Marked increase of chl.a concentration observed in July ($99.0{\mu}g/L$) and November ($109.7{\mu}g/L$) after heavy rainfall. TP concentration ranged $48.0{\sim}126.6{\mu}g/L$, and its the temporal variation was similar to that of chl.a concentration. Microcystis spp., dominant phytoplankton species were used for the growth kinetics experiment, except for the season when Aulacoseira spp. (March, April) and Aphanocapsa sp. (May) dominated. In the temperature range between $10{\sim}25^{\circ}C$, the rate of growth increase per $10^{\circ}C$ was almost two folds. The highest maximum growth rate (${\mu}_{max}=1.09day^{-1}$) of phytoplankton observed September, and ${\mu}_{max}$ was lowest ($0.34day^{-1}$) in March when Aulacoseira spp. dominated. The ${\mu}_{max}$ ($0.78{\pm}0.20day^{-1}$) was relatively high in the summer season when water temperature is above $20^{\circ}C$ and cyanobacteria dominated compared to the spring when diatoms dominated ($0.43{\pm}0.08day^{-1}$). The maximum growth rate ($0.55{\pm}0.12day^{-1}$) and the half saturation concentration ($K_s=0.73{\pm}0.15{\mu}M$) of cyanobacteria during winter season (November, December) was higher than those of diatoms. However, the ${\mu}_{max}$ and $K_s$ of cyanobacteria in December was similar to those of diatom, reflecting that diatom cell quota (Mean 48.4 pgP/cell) was greater than cyanobacteria (34.0 pgP/cell) during this time.

Nutrient Leaching from Leaf Litter of Emergent Macrophyte(Zizania latifolia) and the Effects of Water Temperature on the Leaching Process

  • Park, Sangkyu;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • 제7권4호
    • /
    • pp.289-294
    • /
    • 2003
  • To quantify nutrient loading from emergent macrophytes through leaching in the littoral zones of Paldang Reservoir, we conducted incubation experiments using leaf litter of the emergent macrophyte, Zizaniz latifolia. To separate the leaching process from microbial decay, we used $HgCl_2$ to suppress microbial activity during the experiment. We measured electric conductivity, absorbance at 280nm, total nitrogen and dissolved inorganic nitrogen, total phosphorus and soluble reactive phosphorus, Na, K, Mg and Ca amounts in leaf litter and in water. In addition, we examined the effects of water temperature and ion concentrations of ambient water on the leaching process. A total of 6% of the initial ash-free dry mass of leaf litter was lost due to leaching during incubation (four days). Electric conductivity and A280 continued to increase and saturate during the incubation. To compare reaching rates of different nutrients, we fitted leaching dynamics with a hyperbolic saturation function [Y=AㆍX/(B+X)]. From these fittings, we found that ratios of leaching amounts to nutrient concentration in the litter were in the order of K > Na > Mg > P > Ca > N. Leaching from leaf litter of Z. latifolia was dependent on water temperature while it was not related with ion concentrations in the ambient water. Our results suggest that the leaching process of nutrients, especially phosphorus, from aquatic macrophytes provides considerable contribution to the eutrophication of the Paldang Reservoir ecosystem.