• Title/Summary/Keyword: Nutrients concentration

Search Result 1,015, Processing Time 0.037 seconds

Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea (북한강 의암호의 수질 변동성에 대한 강우·수문학적 비교분석)

  • Hwang, Soon-Jin;Sim, Yeon Bo;Choi, Bong-Geun;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Park, Myung-Hwan;Lee, Su-Woong;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.29-45
    • /
    • 2017
  • This study explored spatiotemporal variability of water quality in correspondence with hydro-meteorological factors in the four stations of Euiam Reservoir located in the upstream region of the North-Han River from May 2012 to December 2015. Seasonal effect was apparent in the variation of water temperature, DO, electric conductivity and TSS during the study period. Stratification in the water column was observed in the near dam site every year and vanished between August and October. Increase of nitrogen nutrients was observed when inflowing discharge was low, while phosphorus increase was distinct both during the early season with increase of inflowing discharge and the period of severe draught persistent. Duration persisting high concentration of Chl-a (>$25mg\;m^{-3}$: the eutrophic status criterion, OECD, 1982) was 1~2 months of the whole year in 2014~2015, while it was almost 4 months in 2013. Water quality of Euiam Reservoir appeared to be affected basically by geomorphology and source of pollutants, such as longitudinally linked instream islands and Aggregate Island, inflowing urban stream, and wastewater treatment plant discharge. While inflowing discharge from the dams upstream and outflow pattern causing water level change seem to largely govern the variability of water quality in this particular system. In the process of spatiotemporal water quality change, factors related to climate (e.g. flood, typhoon, abruptly high rainfall, scorching heat of summer), hydrology (amount of flow and water level) might be attributed to water pulse, dilution, backflow, uptake, and sedimentation. This study showed that change of water quality in Euiam Reservoir was very dynamic and suggested that its effect could be delivered to downstream (Cheongpyeong and Paldang Reservoirs) through year-round discharge for hydropower generation.

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Mineral Content and Nitrate-N of Oats, and Soil Characteristics as Affected by Different Types and N Rates of Liquid Manure (액상분뇨의 종류 및 N 시용량이 연맥의 무기물 함량, 질산태질소 및 토양특성에 미치는 영향)

  • Shin, D.E.;Kim, D.A.;Seo, S.;Lee, J.K.;Chung, E.S.;Shin, J.S.;Kim, W.H.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.3
    • /
    • pp.203-210
    • /
    • 1999
  • Of all the nutrients in liquid manure, N has the greatest potential both for the environment and for increasing forage yields. This experiment was carried out to determine the effect of different types and N rates of liquid manure on mineral content and nitrate-N of oats(Avena sativa L.), soil chemical characteristics in Suweon. Seven treatments consisting of chemical fertilizer $120kg\;N\;ha^{-1}$, liquid cattle manure 120, 240 and $360kg\;N\;ha^{-1}$, liquid swine manure 120, 240 and $360kg\;N\;ha^{-1}$ were arranged in a randomized complete block design with three replications. Compared with the plot of chemical fertilizer, increasing liquid manure N rates increased mineral contents of oats. Nitrate-N contents of oats were ranged from 1,881 to $2,605mg\;kg^{-1}$ in all treatments, which was orderly ranked as chemical fertilizer>liquid cattle manure $360kg\;N\;ha^{-1}$> liquid swine manure $240kg\;N\;ha^{-1}$. Contents of exchangeable cation of the soil were appeared to be higher with increasing liquid manure N rates. Amount of total-N and inorganic-N in soil affected by increasing liquid manure N rates, and there was the highest at liquid swine manure $360kg\;N\;ha^{-1}$ among the treatments. Nitrate-N concentration in infiltration water was not remarkably variable during the experimental period. Based on the results of this experiment, it is suggested that the amount of nitrogen in soil was orderly ranked as liquid swine manure $360kg\;N\;ha^{-1}$, followed by liquid swine manure $240kg\;N\;ha^{-1}$.

  • PDF

Effects of Dietary Herbaceous Peat on In Vitro Fermentation and Milk Production in Dairy Cows (허브부식토의 사료내 첨가에 따른 In Vitro 발효특성과 젖소의 유생산성에 미치는 영향)

  • Kim, Hyeon-Shup;Park, Joong-Kook;Kim, Hong-Yun;Kim, Sang-Bum;Yang, Seung-Hak;Kim, Chang-Hyun;Ahn, Jong-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.177-190
    • /
    • 2011
  • This study was conducted to determine effects of dietary herbaceous peat on in vitro fermentation and milk production in dairy cows. Ruminal pH, gas production, VFA (volatile fatty acid), Ammonia-N, and rumen degradability were examined by the addition of three times over 0, 1, and 5% herbaceous peat with substrate of timothy hay, and the change of rumen fermentation characteristics were evaluated. In 0, 3, 12 and 24 hours cultivation, all treatments did not show a significant difference but the control at 6 hours appeared significantly lower pH compared to 1 and 5% treatments (p<0.05). The gas production of the treatments significantly increased until 12 hours of cultivation compared to control (p<0.05), the rumen ammonia concentration showed a tendency to increase until 24 hours in all treatment groups, and there was no significant difference between treatments. About the rumen degradability, 5% treatment showed higher rumen degradability in all hours than control and 1% treatment (p<0.05). Meanwhile, for in vivo trial, 16 heads of Holstein lactation dairy cows were selected for experiment for four weeks in order to research the change of milk yield, milk compositions and change of somatic cell counts of lactation dairy cows by herbaceous peat feeding. The milk yield of vitamin C and herbaceous peat treatments (T3) was 25.0 kg but the control was 23.2 kg, herbaceous peat treatment (T1) was 23.1 kg, and vitamin C treatment (T2) was 23.4 kg, so there was linear increase effect of milk yield by T3. The partial significance of the milk (fat, milk protein, lactose, MUN and SNF) and change of somatic cell count before and after experiment by the control and treatments about change of milk and somatic cell counts (p<0.05) were recognized. About change of milk in the first half (1~2 weeks) and latter half (3~4 weeks) during four weeks of experiments period, the herbaceous peat supplement treatments showed a tendency of significant decrease of quality of milk protein and SNF. The control and treatments did not show significant change of blood nutrients (total protein, cholesterol, NEFA, BUN), liver function component (AST, GGT) and minerals (Ca, P, Mg) before and after experiment. In summary, it is judged that herbaceous peat feeding for lactation dairy cows would be recommendable based on the results of milk, somatic cell count physiologically.

Eutrophication and Freshwater Red-tide Algae on Early Impoundment Stage of Jeolgol Reservoir in the Paikryeong Island, West Sea of South Korea (백령도 절골저수지의 부영양화와 담수적조)

  • Lee, Heung-Soo;Hur, Jin;Park, Jae-Chung;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.271-283
    • /
    • 2006
  • A systematic water quality survey was conducted in August, 2005 for a drinking water supply reservoir (the Jeolgol reseuoir located in an island), which is at an early stage of impoundment, to investigate the causes of water color deterioration of the reservoir and the clogging of filter beds of a water treatment plant. The reservoir shape was simple and its average depth was 5.5 m, increasing from upreservoir toward the downreservoir end near the dam. Dissolved oxygen (DO) and chloropllyll-a (chi-a) showed a large variation while water temperature had a smaller range. Transparency ranged from 0.6 to 0.9 m (average 0.7 m). The average value of turbidity was 9.3 NTU, ranging from 8.0 ${\sim}$ 12.1 NTU. The transparency and the turbidity appear to be affected by a combination of biological and non-biological factors. The poor transparency was explained by an increase of inorganic colloids and algal bloom in the reservoir. The blockage of the filter bed was attributed to the oversupply of phytoplanktons from the reservoir. The range and the average concentration of chi-a within the reservoir were 31.6 ${\sim}$ 258.9 ${\mu}g\;L^{-1}$, 123.6 ${\mu}g\;L^{-1}$ for the upper layer, and 17.0 ${\sim}$ 37.4 ${\mu}g\;L^{-1}$, 26.5 ${\mu}g\;L^{-1}$ for the bottom layer, respectively. A predominant species contributing the algal bloom was Dinophyceae, Peridinium bipes f. occultatum. The distribution of Peridinium spp. was correlated with chi-a concentrations. The standing crop of phytoplankton was highest in the upreservoir with $8.5\;{\times}\;103\;cells\;mL^{-1}$ and it decreased toward the downresevoir. Synedra of Bacillariophyceae and Microcystis aeruginosa of Cyanophyceae appeared to contribute to the algal bloom, although they are not dominated. It is mostly likely that sloped farmlands located in the watershed of the reservoir caused water quality problems because they may contain a significant amount of the nutrients originated from fertilizers. In addition, the aerators installed in the reservoir and a shortage of the inflowing water may be related to the poor water quality. A long-term monitoring and an integrated management plan for the water quality of the watersheds and the reservoir may be required to improve the water quality of the reservoir.

A Study on the Characteristic of Pollutants of Water Quality and Sediments in Gul-po Stream Basin (굴포천 유역 내 수질 및 퇴적물의 오염물질 특성 파악에 관한 연구)

  • Ahn, Tae-Woong;Jung, Jae-Hoon;Kim, Tae-Hoon;Kim, Sea-Won;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.495-503
    • /
    • 2012
  • The water quality of Gul-po Stream, the subject of this study, has been deteriorating because of the inflow of domestic sewage and the industrial wastewater due to industrialization and the problems relating to the structure of river including slow flow rate and the covering of river. In particular, the domestic sewage from small-medium sized factories by the river and large-scale industrial complex by the upper and middle streams of the river, and the domestic sewage from increasing population due to the regional development are the main pollution sources. Thus, this study aims to survey the water quality and the sediment affecting Gul-po Stream; monitor the state of pollution in water body; assess the yield of sediment and investigate the water quality of river and the problems arising from sediment; and then suggest reasonable ways to improve the situation. The findings from surveying pollution load shows the discharge increases up to average 72.8 times from the upper stream to the downstream of Gul-po Stream, and pollution load increases up to: SS 111 times, BOD 150 times, COD 145 times, the nutrient T-N 222 times and T-P 312 times on an average basis. As for the pollution concentration range, ignition loss is 1.29~12.43%; COD is 4,015~37,547 kg/day; T-N and T-P 94.8~352.5 kg/day and 81.8~372.3 kg/day, respectively. As for the releasing rate of sediment, T-N is -14.46~$156.61mg/m^2/day$; T-P is -11.53~$26.10mg/m^2/day$, indicating the likelihood of internal contamination due to the elution of sediment. This study is expected to be used as basic data to manage Gul-po Stream basin.

Summer Environmental Evaluation of Water and Sediment Quality in the South Sea and East China Sea (남해 및 동중국해의 하계 수질 및 저질 환경평가)

  • Lee, Dae-In;Cho, Hyeon-Seo;Yoon, Yang-Ho;Choi, Young-Chan;Lee, Jeong-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.83-99
    • /
    • 2005
  • To evaluate environmental charateristics of the South Sea and East China Sea on summer, water and sediment quality were measured in June 2001-2003. Surface layer was affceted by Warm water originated from the high temperature and salinity-Tsushima Warm Current, on the other hand, Yellow Sea Cold Water was spread to the bottom layer in the south-western part of the Jeju island, and salinity at stations near the Yangtze River was decreased below 29psu because of a enormous freshwater discharges. Thermocline-depth was formed at about 10m, and chlorophyll maximum layer was existed in and below the thermocline. COD(Chemical Oxygen Demand), TN(Total Nitrogen), and TP(Total Phosphorus) concentrations showed seawater quality grade II in surface layer of the most area, but concentrations of such as COD, Chl. a, TSS(Total Suspended Solid), and nutrients were greatly increased in the effect area of Yangtze River discharges. Correlations between dissolved inorganic nitrogen, Chl. a and salinity were negative patterns strongly, in contrast, those of inorganic phosphorus, COD and Chl. a were positive, which indicates that phytoplankton biomass and phosphorus are considered as important factors of organic matter distribution and algal growth, respectively. in the study area. The distribution of ignition loss, COD, and $H_2S$ of surface sediment were in the ranges of 2.61-8.81%, $0.64-11.86mgO_2/g-dry$, and ND-0.25 mgS/g-dry, respectively, with relatively high concentration in the eastern part of the study area. Therefore, to effective and sustainable use and management of this area, continuous monitoring and countermeasures about major input sources to the water and sediment, and prediction according to the environmental variation, are necessary.

  • PDF

Characteristics of bioethanol production using sweet sorghum juice as a medium of the seed culture (단수수 착즙액이용 배양종균의 바이오에탄올 생산 특성 연구)

  • Cha, Young-Lok;Moon, Youn-Ho;Yu, Gyeong-Dan;Lee, Ji-Eun;Choi, In-Seung;Song, Yeon-Sang;Lee, Kyeong-Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.627-633
    • /
    • 2016
  • Sweet sorghum [Sorghum bicolor (L)] is one of the major crops for biofuels such as sugarcane and sugar beet which raw materials rich in saccharide. Sweet sorghum juice was extracted from the stem. It's composed of fermentable sugars such as glucose, fructose and sucrose. Ethanol from the extracted sweet sorghum juice can be easily produced by yeast fermentation process. Sweet sorghum juice is consisted of not only sugars but also various nutrients like nitrogen and phosphate. For commercial production of bioethanol, seed culture is one of the important parts of fermentation, so that optimal culture medium should be selected for the reduction of processing costs. In this study, sweet sorghum juice was estimated as a culture medium for seed culture of cellulosic bioethanol. For the comparison of cultures with various substrates, it used YPD including each 5 g/L yeast extract and peptone, sweet sorghum juice and hydrolyzed Miscanthus was taken part in the culture with 2%, 5% and 10% sugar conditions. Based on media of YPD and sweet sorghum juice, cell-mass concentration was obtained maximum more than $2.5{\times}10^8CFU/mL$ after 24 h of cultivation. Consequently sweet sorghum juice is suitable for the cell culture with more than $1.0{\times}10^8CFU/mL$ after 12 h of cultivation. This can be used as a culture medium for the cellulosic bioethanol industry.

Effects of Vegetable Peptones on Promotion of Cell Proliferation and Collagen Production (Vegetable Peptones의 세포증식 및 콜라겐생성 촉진효과)

  • Jung, Eun-Sun;Lee, Jong-Sung;Lee, Jienny;Huh, Sung-Ran;Kim, Young-Soo;Hwang, Wang-Taek;Park, Deok-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • Skin aging appears to be principally attributed to a decrease in both levels of Type I collagen and regeneration ability of dermal fibroblasts. It is important to introduce an efficient and safe agent for effective management of skin aging. To this end, we performed screening for anti-ageing agents and then found that vegetable peptones (pea and wheat) promoted cell proliferation of adult stem cells. Vegetable peptones may be considered as useful medium additives because it can supply nutrients, peptides, amino acids or growth factor analogues. This study was designed to investigate effects of vegetable peptones on cell proliferation/collagen production and their possible mechanisms in human dermal fibroblasts. In cell proliferation assay, vegetable peptones significantly promoted cell proliferation in a concentration-dependent manner. In addition, human COL1A2 promoter luciferase and type I procollagen synthesis assays showed that vegetable peptones induce type I procollagen production through the activation of COLlA2 promoter. In both TGF-${\beta}1$ luciferase reporter and ELISA assays, vegetable peptones was found to induce TGF-${\beta}1$ production, suggesting that vegetable peptones induce type I procollagen production through the activation of TGF-${\beta}1$. When applied topically in a human skin twice a day for an 4-week period of time, vegetable peptones did not induce any adverse reactions. Theretore, based on these results, we suggest the possibility that vegetable peptones may be considered as an attractive, wrinkle-reducing candidate for topical application.

Effect of Ascorbic Acid, Silicon, Fe, Proline and Lysine on Proliferation and Collagen Synthesis in the Human Dermal Fibroblast Cell (HS27) (비타민 C, Silicon, 철분, Proline 및 Lysine의 처리가 피부 섬유아세포의 증식 및 Collagen I과 III의 발현에 미치는 효과 비교)

  • Kim, Sun-Ah;Lee, Jin-Ah;Kim, Jung-Min;Kim, Hyun-Ae;Kim, Young-Ae;Yun, Hye-Jeong;Cho, Yun-Hi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1492-1498
    • /
    • 2009
  • In the dermis, fibroblast plays an important role in the turnover of the dermal extracellular matrix. Collagen I and III, which are the most important dermal proteins of the extracellular matrix, function as a stabilizing scaffold of dermal connective tissues, as well as a regulator of differentiation and migration of dermal cells. In this study, we investigated the effect of various nutrients, such as ascorbic acid, silicon, Fe, lysine and proline which function as cofactors or building blocks on collagen synthesis. When the physiological concentrations of ascorbic acid (0-100 ${\mu}M$), silicon (0-50 ${\mu}M$), Fe (0-50 ${\mu}M$), lysine (0-150 ${\mu}M$) and proline (0-300 ${\mu}M$) were treated at HS27 for either 3 or 5 days, 5 day treatment of ascorbic acid at the low concentration (5-10 ${\mu}M$) increased the expression of collagen I and III protein by 115-1300% without increasing cell proliferation. 3 or 5 days treatment of Fe increased the expression of collagen I and III proteins up to 323% in parallel with cell proliferation by 164%. However, cell proliferation and expression of collagen I and III protein in silicon treated HS27 did not differ. Proline and lysine only increased cell proliferation up to 247.9%. Taken together, we demonstrate that the physiological concentrations of ascorbic acid and Fe enhance the expression of collagen I and III protein for treatment of 3 or 5 days.