• Title/Summary/Keyword: Nutrient competition

Search Result 58, Processing Time 0.026 seconds

Development of an Evidence-based Nutritional Intervention Protocol for Adolescent Athletes

  • Lee, Saningun;Lim, Hyunjung
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.3
    • /
    • pp.29-38
    • /
    • 2019
  • [Purpose] Effective nutritional intervention can help reduce the risk of nutritional problems and improve athletic performance in adolescents. The five A's (assess, advise, agree, assist, and arrange) model is widely used as the theoretical framework for advice on nutrition, smoking, drinking, and physical activity and it recommends that practitioners in primary health care promote behavior change to facilitate positive outcomes. This model has also been useful in understanding the underlying processes of behavior change. This study aimed to develop both a novel evidence-based nutritional intervention protocol, rooted in sound nutritional theory, and a customizable nutritional intervention program to support sustainable healthy eating, enhance nutrient intake, and improve athletic performance in adolescent athletes. [Methods] In this study, we adapted the 5 A's behavioral change model and motivational interview to develop a theoretical framework to help adolescent athletes change their behavior and achieve their goals. [Results] During each step of the 5 A's protocol, a customized nutritional intervention protocol was developed by nutrition experts for each of adolescent athletes. Each plan was developed to improve the eating habits of adolescent athletes through group education and counseling. All nutritional counseling sessions were designed to enable participants to apply nutritional knowledge and practical action plans to their training and competition conditions to enable each of them to achieve individual athletic goals and facilitate self-management. [Conclusion] A theoretical and evidence-based nutritional intervention protocol was developed to identify and address obstacles to healthy dietary habits in adolescent athletes. This could be used as the basis for further studies aimed at improving nutrient intake and athletic performance in adolescent athletes.

Analysis of the Current Status of Weeding Operation and Crop Tree Growth Across Planting Periods (전국 풀베기사업 현황분석 및 연차별 조림목 생장 연구)

  • Park, Byung Bae;Seo, Jeong Min;Han, Si Ho;Youn, Woo Bin;Jung, Yeon Kuk;Namgung, Bo Sun;Lee, Sang Jic;Lee, Sang Ick
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.179-188
    • /
    • 2020
  • Weeding refers to the process of removing weeds around crop trees, which cause competition in nutrients, moisture, and light, and has a great effect on the early growth and survival of crop trees for establishing forest resources. This study was conducted to find out the timing and method of weeding that is the most suitable for the major afforestation species in national forests. We investigated (1) weeding time and frequency for each afforestation species and (2) the height of crop trees and the length of weeds. Up to 99% weeding operation was carried out until 5 years following afforestation. Pinus densiflora, Larix kaempferi, Chamaecyparis obtusa, Prunus sargentii, and Betula platyphylla plantations accounted for more than 70% of the total weeding sites. Once-a-year weeding process was conducted from late June to late July (67%), and twice-a-year weeding process was the highest in June-August by 31%. Most species were shorter than the weeds until the first and second year of planting, but the height of the crop trees was higher than that of the weeds by 48% in average from the third year. Therefore, from the third year of afforestation, except for some species, it is possible to reduce the cost of weeding operations while reducing nutrient competition by the weeds through the removal of weed sprouts, mainly woody weeds, rather than clear cutting. This study contributes to efficiently develop forest resource establishment while reducing operational costs through a detailed weeding schedule and species-specific method.

Potential of Epicoccum purpurascens Strain 5615 AUMC as a Biocontrol Agent of Pythium irregulare Root Rot in Three Leguminous Plants

  • Koutb, Mostafa;Ali, Esam H.
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.286-294
    • /
    • 2010
  • Epicoccum purpurascens stain 5615 AUMC was investigated for its biocontrol activity against root rot disease caused by Pythium irregulare. E. purpurascens greenhouse pathogenicity tests using three leguminous plants indicated that the fungus was nonpathogenic under the test conditions. The germination rate of the three species of legume seeds treated with a E. purpurascens homogenate increased significantly compared with the seeds infested with P. irregulare. No root rot symptoms were observed on seeds treated with E. purpurascens, and seedlings appeared more vigorous when compared with the non-treated control. A significant increase in seedling growth parameters (seedling length and fresh and dry weights) was observed in seedlings treated with E. purpurascens compared to pathogen-treated seedlings. Pre-treating the seeds with the bioagent fungus was more efficient for protecting seeds against the root rot disease caused by P. irregulare than waiting for disease dispersal before intervention. To determine whether E. purpurascens produced known anti-fungal compounds, an acetone extract of the fungus was analyzed by gas chromatography mass spectrometry. The extract revealed a high percentage of the cinnamic acid derivative (trimethylsiloxy) cinnamic acid methyl ester. The E. purpurascens isolate grew more rapidly than the P. irregulare pathogen in a dual culture on potato dextrose agar nutrient medium, although the two fungi grew similarly when cultured separately. This result may indicate antagonism via antibiosis or competition.

The Characteristics and Biomass Distribution in Crown of Larix olgensis in Northeastern China

  • Chen, Dongsheng;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.204-212
    • /
    • 2010
  • This study was performed in 22 unthinned Larix olgensis plantations in northeast China. Data were collected on 95 sample trees of different canopy positions and the diameter at breast height ($d_{1.3}$) ranged from 5.7 cm to 40.2 cm. The individual tree models for the prediction of vertical distribution of live crown, branch and needle biomass were built. Our study showed that the crown, branch and needle biomass distributions were most in the location of 60% crown length. These results were also parallel to previous crown studies. The cumulative relative biomass of live crown, branch and needle were fitted by the sigmoid shape curve and the fitting results were quite well. Meanwhile, we developed the crown ratio and width models. Tree height was the most important predictor for crown ratio model. A negative competition factor, ccf and bas which reflected the effect of suppression on a tree, reduced the crown ratio estimates. The height-diameter ratio was a significant predictor. The higher the height-diameter ratio, the higher crown ratio is. Diameter at breast height is the strongest predictor in crown width model. The models can be used for the planning of harvesting operations, for the selection of feasible harvesting methods, and for the estimation of nutrient removals of different harvesting practices.

A Super-Absorbent Polymer Combination Promotes Bacterial Aggressiveness Uncoupled from the Epiphytic Population

  • Lee, Bo-Young;Kim, Dal-Soo;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2008
  • Plant leaf surface is an important niche for diverse epiphytic microbes, including bacteria and fungi. Plant leaf surface plays a critical frontline defense against pathogen infections. The objective of our study was to evaluate the effectiveness of a starch-based super-absorbent polymer(SAP) combination, which enhances water potential and nutrient availability to plant leaves. We evaluated the effect of SAP on the maintenance of bacterial populations. In order to monitor bacterial populations in situ, a SAP mixture containing Pseudomonas syringae pv. tabaci that expressed recombinant green fluorescent protein(GFPuv) was spray-challenged onto whole leaves of Nicotiana benthamiana. The SAP combination treatment enhanced bacterial robustness, as indicated by disease severity and incidence. Unexpectedly, bacterial numbers were not significantly different between leaves treated with the SAP combination and those treated with water alone. Furthermore, young leaves treated with the SAP combination had more severe symptoms and a greater number of bacterial spots caused by primary and secondary infections compared to young leaves treated with the water control. In contrast, bacterial cell numbers did not statistically differ between the two groups, which indicated that measurement of viable GFP-based bacterial spots may provide a more sensitive methodology for assessing virulence of bacterial pathogens than methods that require dilution plating following maceration of bacterial-inoculated leaf tissue. Our study suggests that the SAP combination successfully increased bacterial aggressiveness, which could either be used to promote the ability of biological agents to control weedy plants or increase the robustness of saprophytic epiphytes against competition from potentially harmful microbes.

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Evaluating different interrow distance between corn and soybean for optimum growth, production and nutritive value of intercropped forages

  • Kim, Jeongtae;Song, Yowook;Kim, Dong Woo;Fiaz, Muhammad;Kwon, Chan Ho
    • Journal of Animal Science and Technology
    • /
    • v.60 no.2
    • /
    • pp.1.1-1.6
    • /
    • 2018
  • Background: Maize fodder is being used as staple feed for livestock but it lacks protein and essential amino acids; lysine and tryptophan. Intercropping maize with leguminous soybean crop is promising technique under limited land resources of South Korea but it can only give considerable advantages when adequate distance is provided between corn and soybean rows. Main aim of present study was to find-out adequate distance between corn and soybean seeding rows for optimum growth, yield and nutritive value of intercropped forage. Methods: Different interrow distances between corn and soybean were evaluated under four treatments, viz. 1) Corn sole as positive control treatment 2) Zero cm between corn and soybean (control); 2) Five cm between corn and soybean; 3) 10 cm between corn and soybean, with three replicates under randomized block design. Results: Findings depicted that height and number of corn stalks and ears were similar (P > 0.05) among different treatments. Numerically average corn ear height was decreased at zero cm distance. Dry matter percentage in all components; corn stalk, corn ear and soybean was also found not different (P > 0.05) but dry matter yield in component of corn ear was lower (P < 0.05) at zero cm distance as compared to that of 5 and 10 cm interrow distances. In case of nutritive value, total digestible nutrient yield in intercropped corn was also found lower (P < 0.05) at zero cm distance than that of 5 and 10 cm interrow distances between corn and soybean seeding rows. Substantial decrease in dry matter yield of maize ear at zero cm distance might be attributed to factor of closed interrow spacing which made interplant competition more intensified for light interception, necessary for photosynthetic activity. Lower dry matter yield in ear also reduced total digestible nutrients in intercropped maize because it was determining factor in calculation of digestible nutrients. The optimum yield and nutritive value of forage at wider interrow distance i.e. 5 cm between corn and soybean might be due to adequate interseed distance. Conclusion: Conclusively, pattern of corn and soybean seeding in rows at 5 cm distance was found suitable which provided adequate interrow distance to maintain enough mutual cooperation and decreased competition between both species for optimum production performance and nutritive value of intercropped forage.

Effects of Temperature and Irradiance on Growth Rate of Skeletonema marinoi-dohrnii Complex Isolated from Gyeonggi Bay, Korea (경기만 해역에서 분리된 Skeletonema marinoi-dohrnii complex의 생장률에 대한 수온과 광도의 영향)

  • Song, Tae Yoon;Yoo, Man Ho;Lee, Youngju;Choi, Joong Ki
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.118-128
    • /
    • 2014
  • The growth rate of Skeletonema marinoi-dohrnii complex isolated from Gyeonggi Bay was studied in on axenic batch cultures, under non-nutrient limited condition to determine the growth rate over a wide range of light intensities ($5{\sim}500{\mu}mol\;m^{-2}s^{-1}$) and temperature ($2{\sim}35^{\circ}C$). This species exhibited its maximum specific growth rate of $2.48d^{-1}$ at a combination of $26.1^{\circ}C$ and light intensity of $197{\mu}mol\;m^{-2}s^{-1}$ as associated to optimal conditions of light and temperature. The results supported that S. marinoi-dohrnii complex are more likely to occur in late winter-spring blooms in the western and southern Korea as well as Gyeonggi Bay due to relatively high growth rates ($0.79{\sim}1.61d^{-1}$), considering the effect of temperature on nutrient competition among Skeletonema species. This study might be helpful to improve the precision and reality of a coastal ecosystem model.

Aboveground Biomass and Nutrient Distribution of Korea Pine (Pinus koraiensis) Advance Growth in Deciduous Oak Forests (참나무림내 천연발생한 잣나무 치수의 지상부 현존량 및 양분분포)

  • Ji, Dong-Hun;Byun, Jae-Kyoung;Jeong, Jin-Hyun;Yi, Myong-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1144-1149
    • /
    • 2011
  • The occurrence of Korean pine (Pinus koraiensis) advance growth has been noticed in the deciduous oak forest being adjacent to the mature Korean pine plantation. the korean pine seedlings in the forest were regenerated naturally from harvested and transported Korean pine seeds and cones by rodents, mainly red squirrels. Mongolian oak (Quercus bariabilis), which formed dominant overstory, had close-to-normal distributions of height, diameter and age classes. Korean pine, which dominated the understory, had the reverse J-shaped height, diameter and age distributions that are expected of a shade tolerant species. Growing in the summer shade of the oak, Korean pine seedling had slow, but steady height growth during the past four decades. Total biomass of Korean pine seedling ranged from $2,835-8,541kg\;ha^{-1}$ and biomass allocation of Korean pine seedling was follows : stem (with bark) > foliage > branches > roots. Korean pine seedlings allocated more biomass to foliage and branches compare to planted Korean pine. The smaller root/shoot ratio of Korean pine seedling in the site is to believed to be result of competition for light. Contents of N and K for Korean pine seedling were greatest in foliage follow by branches, stem ad roots, while content of P was greater in the order of foliage > roots > stem > branches.

Performance of Mixed Cropping of Barley and Hairy Vetch as Green Manure Crops for Following Corn Production

  • Shim, Kang Bo;Kim, Min Tae;Kim, Sung Gook;Jung, Kun Ho;Jeon, Weon Tai;Shin, Su Hyun;Lee, Jae Un;Lee, Jong Ki;Kwon, Young Up
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.160-165
    • /
    • 2018
  • BACKGROUND: Mixed cropping of legume and grass was effective system in view point of providing organic matter and nitrogen or reducing the nitrogen starvation of following crop. The relation of the change of N and P constituents depending on the cropping types and those effects on the growth and nutrient uptake of the following crop were observed. METHODS AND RESULTS: Three cropping types, hairy vetch mono cropping, barley mono cropping, and mixed cropping of hairy vetch and barley were applied. Soil properties, growth characteristics, and nitrogen production of green manure crops were observed. In additions, the effect of cropping types on the growth pattern of corn as the following crop was observed. In the mixed cropping system, creeping type hairy vetch climbed to the erect type barely for light utilization resulting in improvement of light interception rate and higher LAI (Leaf Area Index) than in mono cropping. Mixed cropping showed higher biomass production and soil nitrogen availability among the cropping types, indicating relatively much more nutrient supply and higher yield production of following crop. CONCLUSION: Mixed cropping showed relatively higher LAI (dry matter) mainly because of intense competition for light utilization usually after flowering stage. Mixed cropping also showed relatively higher yield of corn, the following crop rather than other types, mainly due to the more biomass production potential and higher N and P production ability. Therefore, mixed cropping was adaptable method to reduce or replace chemical fertilizer application for environmentally-friendly agriculture.