DOI QR코드

DOI QR Code

Aboveground Biomass and Nutrient Distribution of Korea Pine (Pinus koraiensis) Advance Growth in Deciduous Oak Forests

참나무림내 천연발생한 잣나무 치수의 지상부 현존량 및 양분분포

  • Ji, Dong-Hun (Division of Soil and Water Conservation, Korea Forest Research Institute) ;
  • Byun, Jae-Kyoung (Division of Soil and Water Conservation, Korea Forest Research Institute) ;
  • Jeong, Jin-Hyun (Division of Soil and Water Conservation, Korea Forest Research Institute) ;
  • Yi, Myong-Jong (Department of Forest Resource, Kangwon National University)
  • 지동훈 (국립산림과학원 산림수토보전과) ;
  • 변재경 (국립산림과학원 산림수토보전과) ;
  • 정진현 (국립산림과학원 산림수토보전과) ;
  • 이명종 (강원대학교 산림자원학과)
  • Received : 2011.11.25
  • Accepted : 2011.12.16
  • Published : 2011.12.31

Abstract

The occurrence of Korean pine (Pinus koraiensis) advance growth has been noticed in the deciduous oak forest being adjacent to the mature Korean pine plantation. the korean pine seedlings in the forest were regenerated naturally from harvested and transported Korean pine seeds and cones by rodents, mainly red squirrels. Mongolian oak (Quercus bariabilis), which formed dominant overstory, had close-to-normal distributions of height, diameter and age classes. Korean pine, which dominated the understory, had the reverse J-shaped height, diameter and age distributions that are expected of a shade tolerant species. Growing in the summer shade of the oak, Korean pine seedling had slow, but steady height growth during the past four decades. Total biomass of Korean pine seedling ranged from $2,835-8,541kg\;ha^{-1}$ and biomass allocation of Korean pine seedling was follows : stem (with bark) > foliage > branches > roots. Korean pine seedlings allocated more biomass to foliage and branches compare to planted Korean pine. The smaller root/shoot ratio of Korean pine seedling in the site is to believed to be result of competition for light. Contents of N and K for Korean pine seedling were greatest in foliage follow by branches, stem ad roots, while content of P was greater in the order of foliage > roots > stem > branches.

잣나무는 우리나라의 대표적인 조림수종으로서 종자가 비산하지 못하고 조류나 설치류등의 동물에 의해 운반, 산포됨으로써 잣나무 인공조림지 주변 산림의 하층에 잣나무 치수가 천연 발생하게 된다. 조사 임분 내에서는 직경급, 수고급별 분포에서 역 J자형을 나타내는 음수의 잣나무가 상층의 참나무림에 의해 낮은 광환경과 토양의 비옥도가 낮은 조건하에서 생육하고 있다. 조사 임분은 비교적 온도가 높고 건조한 남서사면이지만 상층의 참나무림 임관에 의해 완화되며, 따라서 잣나무 종자의 발아나 치수를 보호하는 미세 입지환경을 제공 할 수 있을 것으로 생각된다. 잣나무 치수의 전체 현존량은 잣나무 인공림에 비해 높았으며 참나무림 하부의 낮은 광 환경에서도 적응하는 것으로 생각된다. 각 기관별 질소와 인의 농도는 인공 잣나무림 및 혼효하는 참나무림의 각 기관별 농도보다 낮았으며 양분량도 현존량에비해 상대적으로 적었다. 이들 양분은 일반적으로 식물의 성장에 필요한 주요 성분이므로 잣나무와 활엽수 혼효림의 시업에 있어서 지조부는 임상에 존치 시키는 것이 유리할 것으로 판단된다.

Keywords

References

  1. Ding, B. 1988. The correlation between seasonal growth of Korean pine and climate factors. Northern Forest silviculture and management. IUFRO Symposium Proceedings. p.II: 69-74.
  2. Han, S.K. 2001. Biomass, nutrient distribution and litterfall in unthinned Korean white pine (Pinus koraiensis) plantation. Master's Thesis, Kangwon National University, Chuncheon, Korea.
  3. Hayashida, M. 1989. Seed Dispersal by Red Squirrels and Subsequent Establishment of Korean pine. Forest Ecol. Manag. 28:115-129. https://doi.org/10.1016/0378-1127(89)90064-9
  4. Jeong, J,H., K.S. Koo, C.H. Lee, and C.S. Kim. 2002. Physico-chemical properties of Korean forest soils by regions. Jour. Korean For. Soc. 91:694-700.
  5. Kawada, H. 1989. Forest soil science. Hakubun Publisher. Tokyo. 399pp.
  6. Kwon, T.H. 1982. Studies on biomass productivity of pinus koraiensis in different-aged plantations. Master's Thesis, Seoul National University, Seoul, Korea.
  7. Kim, J.S., Y.H. Son, J.H. Lim, and Z.S. Kim. 1996. Aboveground biomass, N and P distribution, and litterfall in Pinus rigida and Larix leptolepis plantations. Jour. Korean For. Soc. 85:416-425.
  8. Lee, C.Y. 2000. Forest Soil Environmentology. 2nd ed. p. 65-66. Bosung Culture Publisher, Seoul.
  9. Lee, K.Y. 1977. The variation of Pinus koraiensis Sieb. et Zucc. in Mt. Jiri. Jour. Korean For. Soc. 34:1-14.
  10. Lee, W.S. 2002. Abundance and growth of naturally regenerated Pinus Koraiensis wildlings in four different forest types. Ph. D. Thesis, Kangwon National University, Chuncheon, Korea.
  11. Lim, J.H. 1990. Studies on the ecological characteristics of natural stands in Pinus koraiensis. Korea University, Seoul, Korea.
  12. Li, J., H. Zhan, and C. Liu. 1988. Regeneration and Management of the Korean Pine Forest in the Lesser Xingan Mountains of Northeast China. Northern Forest Silviculture and management. IUFRO Symposium Proceedings. pp. III:1-5.
  13. NIAST. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  14. Song, C.Y. and S.W. Lee. 1996. Biomass and net primary productivity in natural forests of Quercus mongolica and Quercus variabilis. Jour. Korean For. Soc. 85:443-452.
  15. Whittaker, R.H. and P.L. Marks. 1975. Methods of assesing terrestrial productivity. p 55-118 in H. Lieth and R.H. Whittaker, ed. Primary productibity of the biosphere. Springer- Verlag, NY.
  16. Yang, H. and Y. Wu. 1986. Tree composition, age structure and regeneration strategy of the mixed broad-leaved Korean pine (pinus koraiensis) forest in Changbai Mountain Reserve. The temperate forest Ecosystem. Institute of Terrestrial Ecology.
  17. Yi, M.J. 1998. Changes in aboveground biomass and nutrient accumulation of the Korean-pine (Pinus koraiensis) plantation by stand Age at Kangwondo province. Jour. Korean For. Soc. 87:276-285.