DOI QR코드

DOI QR Code

Effects of Temperature and Irradiance on Growth Rate of Skeletonema marinoi-dohrnii Complex Isolated from Gyeonggi Bay, Korea

경기만 해역에서 분리된 Skeletonema marinoi-dohrnii complex의 생장률에 대한 수온과 광도의 영향

  • Received : 2014.02.14
  • Accepted : 2014.06.02
  • Published : 2014.06.30

Abstract

The growth rate of Skeletonema marinoi-dohrnii complex isolated from Gyeonggi Bay was studied in on axenic batch cultures, under non-nutrient limited condition to determine the growth rate over a wide range of light intensities ($5{\sim}500{\mu}mol\;m^{-2}s^{-1}$) and temperature ($2{\sim}35^{\circ}C$). This species exhibited its maximum specific growth rate of $2.48d^{-1}$ at a combination of $26.1^{\circ}C$ and light intensity of $197{\mu}mol\;m^{-2}s^{-1}$ as associated to optimal conditions of light and temperature. The results supported that S. marinoi-dohrnii complex are more likely to occur in late winter-spring blooms in the western and southern Korea as well as Gyeonggi Bay due to relatively high growth rates ($0.79{\sim}1.61d^{-1}$), considering the effect of temperature on nutrient competition among Skeletonema species. This study might be helpful to improve the precision and reality of a coastal ecosystem model.

경기만에서 분리된 Skeletonema marinoi-dohrnii complex의 생장률을 구하기 위하여 영양염이 제한되지 않는 조건 하에서 무균 회분배양으로 넓은 범위의 광조건($5{\sim}500{\mu}mol\;m^{-2}s^{-1}$)과 수온($2{\sim}35^{\circ}C$)에 걸쳐 실험하였다. 실험 결과로부터 온도와 광이 각각 $26.1^{\circ}C$, $197{\mu}mol\;m^{-2}s^{-1}$인 최적조건에서 이 종의 최대 ${\mu}_{max}$$2.48d^{-1}$을 보였다. 또한 실제 해역에서 Skeletonema 종들의 온도에 따른 자원경쟁을 고려할 때 $5{\sim}15^{\circ}C$에서 S. marinoi-dohrnii complex의 상대적으로 높은 생장률 ($0.79{\sim}1.61d^{-1}$)은 늦겨울에서 봄철에 대증식을 일으킬 수 있음을 시사한다. 이 결과는 해양생태계 모델의 정확성과 실재성을 개선하는데 기초자료로 활용될 수 있다.

Keywords

References

  1. Baek SH, DS Kim, BG Hyun, HW Choi and YO Kim. 2011. Characteristics of horizontal community distribution and nutrient limitation on growth rate of phytoplankton during a winter in Gwangyang Bay, Korea. Ocean Polar Res. 33: 99-111. https://doi.org/10.4217/OPR.2011.33.2.099
  2. Bissinger JE, DJ Montagnes, J Sharples and D Atkinson. 2008. Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53:487-493. https://doi.org/10.4319/lo.2008.53.2.0487
  3. Cho ES. 2010a. A comparative study on outbreak and non-outbreak of Cochlodinium polykrikoides Margalef in South Sea of Korea in 2007-2009. J. Korean Soc. Mar. Environ. Saf. 16:31-41.
  4. Cho ES. 2010b. Variations in marine environments and phytoplankton community around Mokpo Harbour. J. Environ. Sci. 19:1323-1336.
  5. Choi JK and JH Shim. 1986. The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea. III. phytoplankton composition, standng crops, tychopelagic plankton. J. Korean Oceanogr. Soc. 21:156-170.
  6. Cloern J. 1978. Empirical model of Skeletonema costatum photosynthetic rate, with applications in the San Francisco Bay Estuary. Adv. Water Resour. 1:267-274. https://doi.org/10.1016/0309-1708(78)90040-4
  7. Cloern JE, BE Cole, RLJ Wong and AE Alpine. 1985. Temporal dynamics of estuarine phytoplankton: A case study of San Francisco Bay. Hydrobiologia 129:153-176. https://doi.org/10.1007/BF00048693
  8. Durbin EG. 1974. Studies on the autecology of the marine diatom Thalassiosira nordenskioeldii Cleve.1. The influence of day length, light intensity, and temperature on growth. J. Phycol. 10:220-225.
  9. Ellegaard M, A Godhe, K Häernström and M McQuoid. 2008. The species concept in a marine diatom: LSU rDNA-based phylogenetic differentiation in Skeletonema marinoi/dohrnii (Bacillariophyceae) is not reflected in morphology. Phycologia 47:156-167. https://doi.org/10.2216/07-09.1
  10. Eppley RW. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063-1085.
  11. Gallagher JC. 1982. Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). J. Phycol. 18:148-162. https://doi.org/10.1111/j.1529-8817.1982.tb03169.x
  12. Goldman JC and EJ Carpenter. 1974. A kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr. 19:756-766. https://doi.org/10.4319/lo.1974.19.5.0756
  13. Hitchcock GL. 1980. Influence of temperature on the growth rate of Skeletonema costatum in response to variations in daily light intensity. Mar. Biol. 57:261-269. https://doi.org/10.1007/BF00387569
  14. Jahan R and JK Choi. 2013. Climate regime shift and phytoplankton phenology in a macrotidal estuary: Long-term surveys in Gyeonggi Bay, Korea. Estuar. Coast. doi:10.1007/s12237-013-9760-7.
  15. Jang PG, B Hyun, HG Cha and HS Chung. 2013. Seasonal variation of phytoplankton assemblages related to surface water in the Eastern Part of the South Sea in Korea. Ocean Polar Res. 35:157-170. https://doi.org/10.4217/OPR.2013.35.2.157
  16. Jang PG, MC Jang, WJ Lee and K Shin. 2010. Effects of nutrient property changes on summer phytoplankton community structure of Jangmok Bay. Ocean Polar Res. 32:97-111. https://doi.org/10.4217/OPR.2010.32.2.097
  17. Jorgensen SE and BD Fath. 2011. Fundamentals of ecological modelling: Applications in environmental management and research. Elsevier, Amsterdam.
  18. Jung SW, SM Yun, SD Lee, YO Kim and JH Lee. 2009. Morphological characteristics of four Species in the genus Skeletonema in coastal waters of South Korea. Algae 24:195-203. https://doi.org/10.4490/ALGAE.2009.24.4.195
  19. Kaeriyama H, E Katsuki, M Otsubo, M Yamada, K Ichimi, K Tada and PJ Harrison. 2011. Effects of temperature and irradiance on growth of strains belonging to seven Skeletonema species isolated from Dokai Bay, southern Japan. Eur. J. Phycol. 46:113-124. https://doi.org/10.1080/09670262.2011.565128
  20. Karentz D and TJ Smayda. 1984. Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959-1980). Mar. Ecol. Prog. Ser. 18:277-293. https://doi.org/10.3354/meps018277
  21. Kim JG and YS Kim. 2002. Application of ecosystem model for eutrophication control in coastal sea of Saemankeum Area, I. Characteristics of water quality and nutrients released from sediments. J. Korean Fish. Soc. 35:348-355.
  22. Kim JG, JW Kim and EI Cho. 2002. The variation of water quality due to sulice gate operation in Shiwha Lake. J. Environ. Sci. 11:1205-1215.
  23. Kooistra WHCF, D Sarno, S Balzano, H Gu, RA Andersen and A Zingone. 2008. Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159:177-193. https://doi.org/10.1016/j.protis.2007.09.004
  24. Kwon KY, SH Youn and JS Lee. 2009. The spatial and temporal variation of phytoplankton in Youngsan River Estuary. Proceedings J. Korean Soc. Mar. Environ. Saf. 6:149-150.
  25. Langdon C. 1987. On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. I. A comparative study of the growth-irradiance relationship for three marine phytoplankton species: Skeletonema costatum, Olisthodicus luteus and Gonyaulux tamarensis. J. Plankton Res. 9:459-482. https://doi.org/10.1093/plankt/9.3.459
  26. Langdon C. 1988. On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. II. A general review. J. Plankton Res. 10:1291-1312. https://doi.org/10.1093/plankt/10.6.1291
  27. Lee IC, SJ Yoon and HJ Kim. 2008. A numerical prediction for water quality at the developing region of deep sea water in the East Sea using ecological model. J. Ocean Eng. Tech. 22:34-41.
  28. Lee JH and HT Huh. 1983. A study on the phytoplankton and red-tide in Deukryang Bay. Bull. KORDI. 5:21-26.
  29. Lee JH, HS Song and EH Lee. 1997. Red-tide on phytoplankton diatom in Inchon Dock of Korea. Korean J. Environ. Biol. 15:119-129.
  30. Lee JH, MS Han and HT Huh. 1981. Studies on the causative organisms of red tide in the Jinhae Bay. Bull. KORDI. 3: 97-105.
  31. Logan JA, DJ Wollkind, SC Hoyt and LK Taniosh. 1976. An analysis model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5:1133-1140. https://doi.org/10.1093/ee/5.6.1133
  32. Mortain-Bertrand A, C Descolas-Gros and H Jupin. 1988. Growth, photosynthesis and carbon metabolism in the temperate marine diatom Skeletonema costatum adapted to low temperature and low photon-flux density. Mar. Biol. 100: 135-141. https://doi.org/10.1007/BF00392963
  33. Oh SJ, JS Park, YH Yoon and HS Yang. 2009. Variation analysis of phytoplankton communities in northern Gamak Bay. Korea. J. Korean Soc. Mar. Environ. Saf. 15:329-338.
  34. Park JS, YH Yoon and SJ Oh. 2009. Variational characteristics of phytoplankton community in the mouth parts of Gamak Bay, southern Korea. Korean J. Environ. Biol. 27:205-215.
  35. Peeters JC and P Eilers. 1978. The relationship between light intensity and photosynthesis: a simple mathematical model. Hydrobiol. Bull. 12:134-136. https://doi.org/10.1007/BF02260714
  36. Platt T and AD Jassby. 1976. The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12:421-430.
  37. Pruder GD and ET Bolton. 1980. Differences between cell divi- sion and carbon fixation rates associated with light intensity and oxygen concentration: Implications in the cultivation of an estuarine diatom. Mar. Biol. 59:1-6. https://doi.org/10.1007/BF00396976
  38. Rynearson TA and EV Armbrust. 2000. DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwelli. Limnol. Oceanogr. 45:1329-1340. https://doi.org/10.4319/lo.2000.45.6.1329
  39. Saggiomo M, WHCF Kooistra, D Sarno, M Montresor, CB Lopez, J Cloern, P Hargraves and A Zinogne. 2006. Differences in Skeletonema distribution among three distant temperate coastal sites. J. Phycol. 42:31-32.
  40. Saravanan V and A Godhe. 2010. Genetic heterogeneity and physiological variation among seasonally separated clones of Skeletonema marinoi (Bacillariophyceae) in the Gullmar Fjord, Sweden. Eur. J. Phycol. 45:177-190. https://doi.org/10.1080/09670260903445146
  41. Sarno D, WHCF Kooistra, LK Medlin, I Percopo and A Zingone. 2005. Diversity in the genus Skeletonema (Bacillariophyceae): II. An assessment of the taxonopmy of S. costatum- like species, with the description of four new species. J. Phycol. 41:151-176. https://doi.org/10.1111/j.1529-8817.2005.04067.x
  42. Sarno D, WHCF Kooistra, S Balzano, PE Hargraves and A Zingone. 2007. Diversity in the genus Skeletonema (Bacillariophyceae): III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. nov. J. Phycol. 43:156-170. https://doi.org/10.1111/j.1529-8817.2006.00305.x
  43. Simonsen R. 1974. The diatom plankton of the Indian Ocean Expedition of R/V Meteor 1964-5. Meteor Forschungsergebnisse. Reihe D: Biologie 19:1-107.
  44. Smayda TJ. 1969. Experimental observations on the influence of temperature, light and salinity on cell division of the marine diatom Detonula confervacea (Cleve) Gran. J. Phycol. 5:150-157. https://doi.org/10.1111/j.1529-8817.1969.tb02596.x
  45. Song KM, SR Lee, S Lee and YH Ahn. 2007. Ecological model experiments of the spring bloom at a dumping site in the Yellow Sea. Ocean Polar Res. 29:217-231. https://doi.org/10.4217/OPR.2007.29.3.217
  46. Song YS, HS Choi, SC Yoo, HP Hong, JH Seo, HJ Lee, TI Kim, SB Woo and JK Choi. 2011. Modeling the effect of nutrient enrichment on the plankton population: Validation using mesocosm experiment data. J. Korean Soc. Coast. Ocean Engin. 23:358-368. https://doi.org/10.9765/KSCOE.2011.23.5.358
  47. Steele JH. 1965. Notes on some theoretical problems in production ecology. pp.383-398. In Pimary Production in Aquatic Environments (CR Goldman ed.). Univ. of Calif. Press. Calif.
  48. Suksomjit M, K Ichimi, K Hamada, M Yamada, K Tada and PJ Harrison. 2009. Ammonium accelerates the growth rate of Skeletonema spp. in the phytoplankton assemblage in a heavily eutrophic embayment, Dokai Bay, Japan. La mer 47: 89-101.
  49. Suzuki Y and M Takahashi. 1995. Growth responses of several diatom species isolated from various environments to temperature. J. Phycol. 31:880-888. https://doi.org/10.1111/j.0022-3646.1995.00880.x
  50. Tennessen DJ, EL Singsaas and TD Sharkey. 1994. Light-emitting diodes as a light source for photosynthesis research. Photosynth. Res. 39:85-92. https://doi.org/10.1007/BF00027146
  51. Yeo HG and H Kang. 1998. Water quality and phytoplankton community in the coastal waters of Incheon. J. Korean Environ. Sci. Soc. 7:321-326.
  52. Yeo HG and MO Park. 1997. Seasonal variations of phytoplankton community and water quality in the East Area of Chinhae Bay. J. Korean Environ. Sci. Soc. 6:231-238.
  53. Yi S, Y Sin, S Yang and C Park. 2005. Seasonal characteristics of phytoplankton distribution in Asan Bay. Ocean Polar Res. 27:149-159. https://doi.org/10.4217/OPR.2005.27.2.149
  54. Yoder JA. 1979. Effect of temperature on light-limited growth and chemical composition of Skeletonema costatum (Bacillariophyceae). J. Phycol. 15:362-370. https://doi.org/10.1111/j.1529-8817.1979.tb04397.x
  55. Yoo KI and JH Lee. 1982. Studies on the planktonic diatoms in the vicinity of Kori Nuclear Power Plant. Bull. KORDI. 4: 53-62.
  56. Yoon YH and DG Kim. 2003. On the spatio-temporal distribution of phytoplankton community in the southwestern parts of Deukryang Bay, South Korea. Korean J. Environ. Biol. 21:8-17.
  57. Yoon YH. 1999. Spatio-temporal distribution of phytoplankton community in Deukryang Bay, South Korea. Korean J. Environ. Biol. 17:481-492.
  58. Zingone A, I Percopo, PA Sims and D Sarno. 2005. Diversity in the genus Skeletonema (Bacillariophyceae). I. a Reexamination of the type material of S. costatum with the description of S. grevillei sp. nov. J. Phycol. 41:140-150. https://doi.org/10.1111/j.1529-8817.2005.04066.x