• Title/Summary/Keyword: Nutrient accumulation

Search Result 238, Processing Time 0.036 seconds

Lysosome Inhibition Reduces Basal and Nutrient-Induced Fat Accumulation in Caenorhabditis elegans

  • Lu, Rui;Chen, Juan;Wang, Fangbin;Wang, Lu;Liu, Jian;Lin, Yan
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.649-659
    • /
    • 2022
  • A long-term energy nutritional imbalance fundamentally causes the development of obesity and associated fat accumulation. Lysosomes, as nutrient-sensing and lipophagy centers, critically control cellular lipid catabolism in response to nutrient deprivation. However, whether lysosome activity is directly involved in nutrient-induced fat accumulation remains unclear. In this study, worm fat accumulation was induced by 1 mM glucose or 0.02 mM palmitic acid supplementation. Along with the elevation of fat accumulation, lysosomal number and acidification were also increased, suggesting that lysosome activity might be correlated with nutrient-induced fat deposition in Caenorhabditis elegans. Furthermore, treatments with the lysosomal inhibitors chloroquine and leupeptin significantly reduced basal and nutrient-induced fat accumulation in C. elegans. The knockdown of hlh-30, which is a critical gene in lysosomal biogenesis, also resulted in worm fat loss. Finally, the mutation of aak-2, daf-15, and rsks-1 showed that mTORC1 (mechanistic target of rapamycin complex-1) signaling mediated the effects of lysosomes on basal and nutrient-induced fat accumulation in C. elegans. Overall, this study reveals the previously undescribed role of lysosomes in overnutrition sensing, suggesting a new strategy for controlling body fat accumulation.

Effect of co-inoculation of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 on the early growth of crop plants in Saemangeum reclaimed soil

  • Kim, Kiyoon;Kwak, Chaemin;Lee, Youngwook;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The objective of this study was to determine the effect of single and co-inoculation of plant growth promoting bacteria (PGPB) on early plant growth in Saemangeum reclaimed soil. Plant growth promoting Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 were inoculated on maize (Zea mays L.) and sorghum-sudangrass hybrid (Sorghum bicolor L.) grown in Saemangeum reclaimed soil. Single and co-inoculation of B. iodinum RS16 and M. oryzae CBMB20 increased plant height, dry biomass accumulation and macro-nutrient accumulation of maize and sorghum-sudangrass hybrid. M. oryzae CBMB20 treatment increased plant height in maize by 41.2% at 30 days after sowing (DAS), shoot dry weight and total dry weight compared to non-inoculated treatment. Macro-nutrient accumulation (N and P) in maize roots was significantly increased with co-inoculation treatment, K and Ca content was significantly increased at B. iodinum RS16 treatment compared to non-inoculated treatment. Macro-nutrient accumulation (P, K, Ca and Mg) in shoot was higher with M. oryzae CBMB20 treatment compared to non-inoculated treatment. In case of sorghum-sudangrass hybrid, co-inoculation treatment showed 33.7% increase in plant height compared to non-inoculated treatment at 30 DAS. M. oryzae CBMB20 treatment increased root dry weight and total dry weight, macro-nutrient accumulation in roots and N, Ca and Mg accumulation in shoot compared to non-inoculated treatment. P and K accumulation in shoot was significantly increased at co-inoculation treatment compared to non-inoculated treatment. This pot culture experiment demonstrated that single and co-inoculation of B. iodinum RS16 and M. oryzae CBMB20 increased the early growth and nutrient accumulation of maize and sorghum-sudangrass hybrid.

A Study on Accumulation of Ni in Salix alba and S. caprea by Hydroponic Culture in Ni Solution (수경재배에 의한 Salix alba와 S. caprea의 Ni축적에 관한 연구)

  • Lee, Chang-Heon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.5
    • /
    • pp.1-11
    • /
    • 2008
  • This study was carried out to provide primary data set for cleaning of contamination site. By having hydroponic culture on Salix alba and S. caprea seedling treated with Ni solution, the result of Ni accumulation came out as followings : In a treatment of Ni to the Salix alba and S. caprea, Ni accumulation increased in its root, leaves, and stem, as Ni concentration became higher until $10.0{\mu}mol$. But in a $100.0{\mu}mol$ treatment, the seedlings died after 4 weeks. Ni accumulation in the Salix alba and S. caprea was the highest in its roots, second-highest in leaves, and the lowest in stems. In the case of $10.0{\mu}mol$ treatment of Ni solution, Ni accumulation in roots were above 500.0mg/L, and leaves were above 20.0mg/L. But it was lower than 13.0mg/L in stems. Ni accumulation in the plant increased more when nutrient solution containing Ni was weekly changed than just refilling the same amount of nutrient solution that evaporated Ni accumulation in Salix alba was higher than S. caprea when the nutrient solution had been refilled only.

Nutrient dynamics in montane wetlands, emphasizing the relationship between cellulose decomposition and water chemistry

  • Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.33-42
    • /
    • 2005
  • Wetlands often function as a nutrient sink. It is well known that increased input of nutrient increases the primary productivity but it is not well understood what is the fate of produced biomass in wetland ecosystem. Water and sediment quality, decomposition rate of cellulose, and sediment accumulation rate in 11 montane marshes in northern Sierra Nevada, California were analyzed to trace the effect of nitrogen and phosphorus content in water on nutrient dynamics. Concentrations of ammonium, nitrate, soluble reactive phosphorus (SRP) in water were in the range of 27 to 607, 8 to 73, and 6 to 109 ppb, respectively. Concentrations of ammonium, calcium, magnesium, sodium, and potassium in water were the highest in Markleeville, which has been impacted by animal farming. Nitrate and SRP concentrations in water were the highest in Snow Creek, which has been impacted by human residence and a golf course. Cellulose decomposition rates ranged from 4 to 75 % per 90 days and the highest values were measured in Snow Creek. Concentrations of total carbon, nitrogen, and phosphorus in sediment ranged from 8.0 to 42.8, 0.5 to 3.0, and 0.076 to 0.162 %, respectively. Accumulation rates of carbon, nitrogen, and phosphorus fluctuated between 32.7 to 97.1, 2.4 to 9.0, and 0.08 to $1.14gm^{-2}yr{-1}$, respectively. Accumulation rates of carbon and nitrogen were highest in Markleeville and that of phosphorus was highest in Lake Van Norden. Correlation analysis showed that decay rate is correlated with ammonium, nitrate, and SRP in water. There was no correlation between element content in sediment and water quality. Nitrogen accumulation rate was correlated with ammonium in water. These results showed that element accumulation rates in montane wetland ecosystems are determined by decomposition rate rather than nutrient input. This study stresses a need for eco-physiological researches on the response of microbial community to increased nutrient input and environmental change because the microbial community is responsible for the decomposition process.

  • PDF

AMPK-induced mitochondrial biogenesis decelerates retinal pigment epithelial cell degeneration under nutrient starvation

  • Yujin Park;Yeeun Jeong;Sumin Son;Dong-Eun Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.84-89
    • /
    • 2023
  • The implications of nutrient starvation due to aging on the degeneration of the retinal pigment epithelium (RPE) is yet to be fully explored. We examined the involvement of AMPK activation in mitochondrial homeostasis and its relationship with the maintenance of a healthy mitochondrial population and epithelial characteristics of RPE cells under nutrient starvation. Nutrient starvation induced mitochondrial senescence, which led to the accumulation of reactive oxygen species (ROS) in RPE cells. As nutrient starvation persisted, RPE cells underwent pathological epithelial-mesenchymal transition (EMT) via the upregulation of TWIST1, a transcription regulator which is activated by ROS-induced NF-κB signaling. Enhanced activation of AMPK with metformin decelerated mitochondrial senescence and EMT progression through mitochondrial biogenesis, primed by activation of PGC1-α. Thus, by facilitating mitochondrial biogenesis, AMPK protects RPE cells from the loss of epithelial integrity due to the accumulation of ROS in senescent mitochondria under nutrient starvation.

P(3HB) Accumulation in Alcaligenes eutrophus H16(ATCC 17699) under Nutrient-Rich Condition and Its Induced Production from Saccharides and Their Derivatives

  • Song, Jae-Jun;Shin, Yong-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.115-122
    • /
    • 1993
  • Poly(3-hydroxybutyrate)(P(3HB)) accumulation under nutrient-rich condition with various amounts of $(NH_4)_2 SO_4$ was systematically investigated. The results of the electron-microscopy and the solvent extraction showed that the P(3HB) accumulation is unavoidable even under nutrient-rich condition. This indicates that in a two-step culture of Alcaligenes eutrophus H16, the researches should be careful in interpreting the data of polyhydroxyalkanoates(PHAs) accumulation in terms of the carbon-source fed in the second step because the two-step culture product contains the P(3HB) produced under nutrient-rich condition. The polyester production capability in a two-step batch culture of A. eutrophus H16(ATCC 17699) was also investigated using various saccharides and their derivatives such as glucose, fructose, gluconic acid, glucaric acid, sorbitol, lactose, galactose, and mannose. The polyesters synthesized were characterized by 500 MHz$^{1}H-NMR$ spectroscopy, intrinsic viscosity$[\eta]$ measurement in chloroform and differential scanning calorimetry(DSC). 500 MHz $^{1}H-NMR$ analysis showed that all polyesters synthesized generally contained 1~2 mol% of 3HV. Another finding is that the glucose utilization can be increased by changing the autoclaving procedure of the substrate to enhance the P(3HB) production yield up to 46 wt% of P(3HB) in dry cells.

  • PDF

Effect of Acanthopanacis Cortex Boiling Extract Solutions on Fat Accumulation in the Obese Rats Induced by High Fat Dietary (오갈피의 열수추출액이 고지방식이에 의한 비만유도 흰 쥐의 지방 축적에 미치는 영향)

  • Sung, Tae-Soo;Son, Gyu-Mok;Bae, Man-Jong;Choi, Cheong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 1992
  • This study was carried out to evaluate the effect of Acanthopanacis Cortex boiling extract solutions on the fat accumulation in the obese rats induced by the oral high fat administration for six weeks. Total cholesterol, neutral fat and adipose acid of ACR groups were lower than the control group. During the feeding experiment, LDL and VLDL were increased while HDL was decreased in all groups. Insulin and cortisol were higher than the control group, due to the fat accumulation. Based on the above results, it was shown that it is possible to improve fat accumulation induced by high fat dietary through using the oral administration of Acanthopanacis Cortex boiling extract solutions.

  • PDF

Effects of Light Intensity and Nutrient Solution Strength during Short Day Treatment on the Growth and Nutrient Absorption of Kalanchoe blossfeldiana 'Rako' in Ebb and Flow System and the Accumulation of Nutrients in Growing Medium (단일처리시기의 광도와 양액농도가 Ebb and Flow 재배시스템에서 재배한 칼랑코에(Kalanchoe blossfeldiana 'Rako')의 생육, 양분흡수 및 배지 양분집적에 미치는 영향)

  • Noh, Eun-Hee;Choi, Jong-Myoung;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2011
  • The objective of this study was to investigate the effects of light intensity and electrical conductivity (EC) of nutrient solution during short day treatment in an ebb and flow systems on the growth and nutrient uptake of potted Kalanchoe blossfeldiana 'Rako' and the nutrient accumulation of growing medium. Nutrient concentrations in the growing medium were also analyzed to investigate the accumulation rates of macro-nutrients such as T-N, P, K, Ca, and Mg, respectively. To achieve the objectives, plants were fed with a nutrient solution with 1.2, 1.8, or $2.4dS{\cdot}m^{-1}$ under three daily photosynthetic photon flux (PPF) of 4.26, 5.51, or $9.75mol{\cdot}m^{-2}{\cdot}d^{-1}$. Both light intensity and EC of nutrient solution significantly influenced the crop growth. The elevation of PPFs resulted in the increase of plant growth. For each light condition, plant growth, such as dry and fresh weight and leaf area, was the highest when the electrical conductivity of nutrient solution was controlled to $2.4dS{\cdot}m^{-1}$. However, growth was acceptable in the EC ranges from 1.8 to $2.4dS{\cdot}m^{-1}$. Both light intensity and EC of nutrient solution significantly influenced the uptake of nutrients in the solution tanks and the accumulation of nutrients in the growing medium. As the EC of nutrient solution was elevated, the absorption rates of $NO_3^-$, $PO_4^{-3}$, $K^+$, and $Mg^{2+}$ by crops and accumulation of those in growing medium increased, but the light intensity did not significantly influence the absorption rates. Based on the above results, the regression models were suggested for anticipating the macro-nutrient accumulations in growing medium.

Plant Growth and Nutrient Uptake of Kalanchoe Plants (Kalanchoe blossfeldiana 'New Alter') and Nutrient Accumulation of Growing Media with Growth Stage at Different Nutrient Strengths in Ebb and Flow Subirrigation Systems (Ebb and flow 저면관수 시스템에서 칼랑코에(Kalanchoe blossfeldiana 'New Alter') 생육단계별 배양액 농도에 따른 생육, 양분흡수 및 배지 양분 집적)

  • Noh, Eun-Hee;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.973-979
    • /
    • 2010
  • The objective of this study was to determine the effect of electrical conductivity (EC) of nutrient solution on the growth, nutrient uptake of potted kalanchoe plants ($Kalanchoe$ $blossfeldiana$ 'New Alter') and the nutrient accumulation at the growing media with growth stage in ebb and flow subirrigation systems. Significant differences in leaf area, plant height, and dry weight of the plants were found among the different ECs of nutrient solution of 0.8, 1.6, 2.4, and $3.2dS{\cdot}m^{-1}$. Particularly the difference in plant growth became significantly greater from 5 weeks after treatment. The overall growth was the highest at EC $1.6dS{\cdot}m^{-1}$. Leaf area, plant height, and dry weight were maintained higher when EC increased to $2.4dS{\cdot}m^{-1}$, but rapidly decreased after EC $3.2dS{\cdot}m^{-1}$. The uptake of NO3-N was the greatest while that of $Mg^{2+}$ was the lowest at EC $1.6dS{\cdot}m^{-1}$, even though small differences were found among macro elements. The EC at the top layer of the growing media was 1 to 3 times higher than that at the bottom layer. Nutrient accumulation was accelerated in both the top and bottom layers with growth stage. At EC $3.2dS{\cdot}m^{-1}$, the growth of the plants was suppressed due to higher nutrient accumulation at the growing media. From the results, the strength and composition of nutrient solution should be determined by considering nutrient accumulation at the growing media in addition to EC of nutrient solution in ebb and flow subirrigation systems.

Effect of Pulsed Electric Fields upon Accumulation of Zinc in Saccharomyces cerevisiae

  • Pankiewicz, Urszula;Jamroz, Jerzy
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.646-651
    • /
    • 2011
  • Cultures of Saccharomyces cerevisiae were treated with pulsed electric fields to improve accumulation of zinc in the biomass. Under optimized conditions, that is, on 15 min exposure of the 20 h grown culture to PEFs of 1500 V and 10 ${\mu}s$ pulse width, accumulation of zinc in the yeast biomass reached a maximum of 15.57 mg/g d.m. Under optimum zinc concentration (100 ${\mu}g$/ml nutrient medium), its accumulation in the cells was higher by 63% in comparison with the control (without PEFs). That accumulation significantly correlated against zinc concentration in the medium. Neither multiple exposure of the cultures to PEFs nor intermittent supplementation of the cultures with zinc increased the zinc accumulation. The intermittent supplementation of the cultures with zinc and multiple exposures on PEFs could even reduce the accumulation efficiency, respectively, by 57% and 47%.