Browse > Article
http://dx.doi.org/10.4014/jmb.1101.01030

Effect of Pulsed Electric Fields upon Accumulation of Zinc in Saccharomyces cerevisiae  

Pankiewicz, Urszula (Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin)
Jamroz, Jerzy (Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.6, 2011 , pp. 646-651 More about this Journal
Abstract
Cultures of Saccharomyces cerevisiae were treated with pulsed electric fields to improve accumulation of zinc in the biomass. Under optimized conditions, that is, on 15 min exposure of the 20 h grown culture to PEFs of 1500 V and 10 ${\mu}s$ pulse width, accumulation of zinc in the yeast biomass reached a maximum of 15.57 mg/g d.m. Under optimum zinc concentration (100 ${\mu}g$/ml nutrient medium), its accumulation in the cells was higher by 63% in comparison with the control (without PEFs). That accumulation significantly correlated against zinc concentration in the medium. Neither multiple exposure of the cultures to PEFs nor intermittent supplementation of the cultures with zinc increased the zinc accumulation. The intermittent supplementation of the cultures with zinc and multiple exposures on PEFs could even reduce the accumulation efficiency, respectively, by 57% and 47%.
Keywords
Zinc; biomass; Saccharomyces cerevisiae; pulsed electric fields;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Marselles-Fontanet, A. R. and O. Martin-Belloso. 2007. Optimization and validation of PEF processing conditions to inactivate oxidative enzymes of grape juice. J. Food Eng. 83: 452-462.   DOI   ScienceOn
2 Norris, P. R. and D. P. Kelly. 1977. Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. J. Gen. Microbiol. 99: 317-324.   DOI
3 Pankiewicz, U. and J. Jamroz. 2010. Effect of pulsed electric fields upon accumulation of magnesium in Saccharomyces cerevisiae. Eur. Food Res. Technol. 231: 663-668.   DOI   ScienceOn
4 Pasternakiewicz, A. and T. Tuszy ski. 1997. Effect of calcium, magnesium, cobalt (II), and zinc cations on the Saccharomyces cerevisiae growth. Pol. J. Food Nutr. Sci. 4: 61-69.
5 Pothakamury, U. R., G. V. Barbosa-Canovas, B. G. Swanson, and K. D. Spence. 1997. Ultrastructural changes in Staphylococcus aureus treated with pulsed electric fields. Food Sci. Technol. Int. 3: 113-121.   DOI   ScienceOn
6 Prasanna, G. L. and T. Panda. 1997. Electroporation: Basic principles, practical considerations and applications in molecular biology. Bioprocess Eng. 16: 261-264.   DOI   ScienceOn
7 Calderon-Miranda, M. L., G. V. Barbosa-Canovas, and B. G. Swanson. 1999. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk. Int. J. Food Microbiol. 51: 31-39.   DOI   ScienceOn
8 Daveloose, M. 1997. An investigation of zinc concentrations in brewhouse worts. Master Brew. Assoc. Am. Tech. Q. 24: 109-112.
9 Fernandez-Diaz, M. D., L. Barsotti, E. Dumay, and J. C. Cheftel. 2000. Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. J. Agric. Food Chem. 48: 2332-2339.   DOI   ScienceOn
10 Fiedurek, J., M. Skowronek, and J. Jamroz. 2000. Structural changes in biological systems induced by pulsatory electric field. Post. Nauk Rol. 6: 41-55.
11 MacDiarmid, C. W., L. A. Gaither, and D. Eide. 2000. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J. 19: 2845-2855.   DOI
12 Gadd, G. M. 1990. Heavy metal accumulation by bacteria and Rother microorganisms. Experientia 46: 834-840.   DOI   ScienceOn
13 Kim, H., J. Ye, and Y. Li. 2001. Inactivation of Listeria monocytogenes in chilling brine using a flow through electrochemical treatment. Institute of Food Technologists, annual meeting. Paper 59H-22.
14 Kreder, G. C. 1999. Yeast assimilation of trub-bound zinc. J. Am. Soc. Brew. Chem. 57: 129-132.
15 Torregrosa, F., M. D. Esteve, A. Frigola, and C. Cortes. 2006. Ascorbic acid stability during refrigerated storage of orangecarrot juice treated by high pulsed electric field and comparison with pasteurized juice. J. Food Eng. 73: 339-345.   DOI   ScienceOn
16 Sampedro, F., A. Rivas, D. Rodrigo, A. Martinez, and M. Rodrigo. 2007. Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice-milk based beverage: Effect of process parameters. J. Food Eng. 80: 931-938.   DOI   ScienceOn
17 Serpersu, E. H. and T. Y. Tsong. 1984. Activation of electrogenic Rb+ transport of (Na, K)-ATPase by an electric field. J. Biol. Chem. 259: 7155-7162.
18 Stehlik-Tomas, V., V. G. Zetic, D. Stanzer, S. Grba, and N. Vahcic. 2004. Zinc, copper and manganese enrichment in yeast Saccharomyces cerevisiae. Food Technol. Biotech. 42: 115-120.
19 Walker, G. M. 1994. The roles of magnesium in biotechnology. Crit. Rev. Biotechnol. 14: 311-354.   DOI   ScienceOn
20 Vallee, B. L. and K. H. Falchuk. 1993. The biochemical basis of zinc physiology. Physiol. Rev. 73: 79-118.   DOI   ScienceOn
21 Weaver, J. C. and Y. A. Chizmadzhev. 1996. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41: 135- 160.   DOI   ScienceOn
22 Williams, R. J. P. and J. J. R. Frausto da Silva. 2000. The distribution of elements in cells. Coord. Chem. Rev. 200-202: 247-348.   DOI
23 Zimmermann, U. 1986. Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105: 175-256.
24 Blackwell, K. J., I. Singleton, and J. M. Tobin. 1995. Metal cation uptake by yeast: A review. Appl. Microbiol. Biotech. 43: 579-584.   DOI
25 Aronsson, K. and U. Rönner. 2001. Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields. Innov. Food Sci. Emerg. 2: 105-112.   DOI   ScienceOn
26 Aronsson, K., U. Rönner, and E. Borch. 2005. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int. J. Food Microbiol. 99: 19-32.   DOI   ScienceOn
27 Barbosa-Canovas, G. V., M. M. Gongora-Nieto, U. R. Pothakamury, and B. G. Swanson. 1999. Preservation of Foods with Pulsed Electric Field. Academic Press, San Diego, CA.
28 Barsotti, L. and J. C. Cheftel. 1999. Food processing by pulsed electric fields. II. Biological aspects. Food Rev. Int. 5: 181-213.
29 Berg, J. M., J. L. Tymoczko, and L. Stryer. 2002. Biochemistry, pp. 270, 465, 687. WH Freeman and Company, New York.
30 Blackwell, K. J., J. M. Tobin, and S. V. Avery. 1997. Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae. Appl. Microbiol. Biotech. 47: 180-184.   DOI   ScienceOn
31 Brady, D. and J. R. Duncan. 1994. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Microbiol. Biotech. 41: 149-154.   DOI   ScienceOn
32 Bromberg, S. K., P. A. Bower, G. R. Duncombe, J. Fehring, I. Gerber, V. K. Lau, and M. Tata. 1997. Requirements for zinc, manganese, calcium and magnesium in wort. J. Am. Soc. Brew. Chem. 55: 123-128.
33 Brady, D., D. Glaum, and J. R. Duncan. 1994. Copper tolerance in Saccharomyces cerevisiae. Lett. Appl. Microbiol. 18: 245-250.   DOI   ScienceOn