DOI QR코드

DOI QR Code

Effect of Pulsed Electric Fields upon Accumulation of Zinc in Saccharomyces cerevisiae

  • Pankiewicz, Urszula (Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin) ;
  • Jamroz, Jerzy (Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin)
  • Received : 2011.01.19
  • Accepted : 2011.03.27
  • Published : 2011.06.28

Abstract

Cultures of Saccharomyces cerevisiae were treated with pulsed electric fields to improve accumulation of zinc in the biomass. Under optimized conditions, that is, on 15 min exposure of the 20 h grown culture to PEFs of 1500 V and 10 ${\mu}s$ pulse width, accumulation of zinc in the yeast biomass reached a maximum of 15.57 mg/g d.m. Under optimum zinc concentration (100 ${\mu}g$/ml nutrient medium), its accumulation in the cells was higher by 63% in comparison with the control (without PEFs). That accumulation significantly correlated against zinc concentration in the medium. Neither multiple exposure of the cultures to PEFs nor intermittent supplementation of the cultures with zinc increased the zinc accumulation. The intermittent supplementation of the cultures with zinc and multiple exposures on PEFs could even reduce the accumulation efficiency, respectively, by 57% and 47%.

Keywords

References

  1. Aronsson, K. and U. Rönner. 2001. Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields. Innov. Food Sci. Emerg. 2: 105-112. https://doi.org/10.1016/S1466-8564(01)00030-3
  2. Aronsson, K., U. Rönner, and E. Borch. 2005. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int. J. Food Microbiol. 99: 19-32. https://doi.org/10.1016/j.ijfoodmicro.2004.07.012
  3. Barbosa-Canovas, G. V., M. M. Gongora-Nieto, U. R. Pothakamury, and B. G. Swanson. 1999. Preservation of Foods with Pulsed Electric Field. Academic Press, San Diego, CA.
  4. Barsotti, L. and J. C. Cheftel. 1999. Food processing by pulsed electric fields. II. Biological aspects. Food Rev. Int. 5: 181-213.
  5. Berg, J. M., J. L. Tymoczko, and L. Stryer. 2002. Biochemistry, pp. 270, 465, 687. WH Freeman and Company, New York.
  6. Blackwell, K. J., I. Singleton, and J. M. Tobin. 1995. Metal cation uptake by yeast: A review. Appl. Microbiol. Biotech. 43: 579-584. https://doi.org/10.1007/BF00164757
  7. Blackwell, K. J., J. M. Tobin, and S. V. Avery. 1997. Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae. Appl. Microbiol. Biotech. 47: 180-184. https://doi.org/10.1007/s002530050909
  8. Brady, D. and J. R. Duncan. 1994. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Microbiol. Biotech. 41: 149-154. https://doi.org/10.1007/BF00166098
  9. Brady, D., D. Glaum, and J. R. Duncan. 1994. Copper tolerance in Saccharomyces cerevisiae. Lett. Appl. Microbiol. 18: 245-250. https://doi.org/10.1111/j.1472-765X.1994.tb00860.x
  10. Bromberg, S. K., P. A. Bower, G. R. Duncombe, J. Fehring, I. Gerber, V. K. Lau, and M. Tata. 1997. Requirements for zinc, manganese, calcium and magnesium in wort. J. Am. Soc. Brew. Chem. 55: 123-128.
  11. Calderon-Miranda, M. L., G. V. Barbosa-Canovas, and B. G. Swanson. 1999. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk. Int. J. Food Microbiol. 51: 31-39. https://doi.org/10.1016/S0168-1605(99)00071-9
  12. Daveloose, M. 1997. An investigation of zinc concentrations in brewhouse worts. Master Brew. Assoc. Am. Tech. Q. 24: 109-112.
  13. Fernandez-Diaz, M. D., L. Barsotti, E. Dumay, and J. C. Cheftel. 2000. Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. J. Agric. Food Chem. 48: 2332-2339. https://doi.org/10.1021/jf9908796
  14. Fiedurek, J., M. Skowronek, and J. Jamroz. 2000. Structural changes in biological systems induced by pulsatory electric field. Post. Nauk Rol. 6: 41-55.
  15. Gadd, G. M. 1990. Heavy metal accumulation by bacteria and Rother microorganisms. Experientia 46: 834-840. https://doi.org/10.1007/BF01935534
  16. Kim, H., J. Ye, and Y. Li. 2001. Inactivation of Listeria monocytogenes in chilling brine using a flow through electrochemical treatment. Institute of Food Technologists, annual meeting. Paper 59H-22.
  17. Kreder, G. C. 1999. Yeast assimilation of trub-bound zinc. J. Am. Soc. Brew. Chem. 57: 129-132.
  18. MacDiarmid, C. W., L. A. Gaither, and D. Eide. 2000. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J. 19: 2845-2855. https://doi.org/10.1093/emboj/19.12.2845
  19. Marselles-Fontanet, A. R. and O. Martin-Belloso. 2007. Optimization and validation of PEF processing conditions to inactivate oxidative enzymes of grape juice. J. Food Eng. 83: 452-462. https://doi.org/10.1016/j.jfoodeng.2007.04.001
  20. Norris, P. R. and D. P. Kelly. 1977. Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. J. Gen. Microbiol. 99: 317-324. https://doi.org/10.1099/00221287-99-2-317
  21. Pankiewicz, U. and J. Jamroz. 2010. Effect of pulsed electric fields upon accumulation of magnesium in Saccharomyces cerevisiae. Eur. Food Res. Technol. 231: 663-668. https://doi.org/10.1007/s00217-010-1317-4
  22. Pasternakiewicz, A. and T. Tuszy ski. 1997. Effect of calcium, magnesium, cobalt (II), and zinc cations on the Saccharomyces cerevisiae growth. Pol. J. Food Nutr. Sci. 4: 61-69.
  23. Pothakamury, U. R., G. V. Barbosa-Canovas, B. G. Swanson, and K. D. Spence. 1997. Ultrastructural changes in Staphylococcus aureus treated with pulsed electric fields. Food Sci. Technol. Int. 3: 113-121. https://doi.org/10.1177/108201329700300206
  24. Prasanna, G. L. and T. Panda. 1997. Electroporation: Basic principles, practical considerations and applications in molecular biology. Bioprocess Eng. 16: 261-264. https://doi.org/10.1007/s004490050319
  25. Sampedro, F., A. Rivas, D. Rodrigo, A. Martinez, and M. Rodrigo. 2007. Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice-milk based beverage: Effect of process parameters. J. Food Eng. 80: 931-938. https://doi.org/10.1016/j.jfoodeng.2006.08.013
  26. Serpersu, E. H. and T. Y. Tsong. 1984. Activation of electrogenic Rb+ transport of (Na, K)-ATPase by an electric field. J. Biol. Chem. 259: 7155-7162.
  27. Stehlik-Tomas, V., V. G. Zetic, D. Stanzer, S. Grba, and N. Vahcic. 2004. Zinc, copper and manganese enrichment in yeast Saccharomyces cerevisiae. Food Technol. Biotech. 42: 115-120.
  28. Torregrosa, F., M. D. Esteve, A. Frigola, and C. Cortes. 2006. Ascorbic acid stability during refrigerated storage of orangecarrot juice treated by high pulsed electric field and comparison with pasteurized juice. J. Food Eng. 73: 339-345. https://doi.org/10.1016/j.jfoodeng.2005.01.034
  29. Vallee, B. L. and K. H. Falchuk. 1993. The biochemical basis of zinc physiology. Physiol. Rev. 73: 79-118. https://doi.org/10.2466/pr0.1993.73.1.79
  30. Walker, G. M. 1994. The roles of magnesium in biotechnology. Crit. Rev. Biotechnol. 14: 311-354. https://doi.org/10.3109/07388559409063643
  31. Weaver, J. C. and Y. A. Chizmadzhev. 1996. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41: 135- 160. https://doi.org/10.1016/S0302-4598(96)05062-3
  32. Williams, R. J. P. and J. J. R. Frausto da Silva. 2000. The distribution of elements in cells. Coord. Chem. Rev. 200-202: 247-348. https://doi.org/10.1016/S0010-8545(00)00324-6
  33. Zimmermann, U. 1986. Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105: 175-256.

Cited by

  1. Stimulation of Saccharomyces cerevisiae Cultures by Pulsed Electric Fields vol.7, pp.11, 2011, https://doi.org/10.1007/s11947-014-1336-4
  2. Effect of Pulsed Electric Fields (PEF) on Accumulation of Magnesium in Lactobacillus rhamnosus B 442 Cells vol.250, pp.5, 2017, https://doi.org/10.1007/s00232-017-9986-6
  3. Bioaccumulation of zinc ions in Lactobacillus rhamnosus B 442 cells under treatment of the culture with pulsed electric field vol.245, pp.4, 2011, https://doi.org/10.1007/s00217-018-3219-9
  4. Pulsed Electric Field (PEF) Enhances Iron Uptake by the Yeast Saccharomyces cerevisiae vol.11, pp.6, 2011, https://doi.org/10.3390/biom11060850
  5. Effect of electroporation in a continuous flow system on bioaccumulation of magnesium, zinc and calcium ions in Lactobacillus rhamnosus B 442 cells vol.140, pp.None, 2011, https://doi.org/10.1016/j.bioelechem.2021.107769
  6. The Use of Iron-Enriched Yeast for the Production of Flatbread vol.26, pp.17, 2011, https://doi.org/10.3390/molecules26175204