• Title/Summary/Keyword: Nutation control

Search Result 8, Processing Time 0.022 seconds

Nonlinear Nutation Control of Spacecraft Using Two Momentum Wheels

  • Seo, In Ho;Kim, Jong Myeong;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.99-107
    • /
    • 2017
  • In this work, the nutation control of rigid spacecraft with only two momentum wheels is addressed by applying the feedback linearization technique. In this strategy, the primary performance index is to regulate the nutational angle by the momentum control of wheels. The spacecraft attitude equations of motion are transformed to a general linearized form by feedback linearization technique, including a guaranteed control law promising the internal dynamics stability to accomplish the nutation angle small. It is proven that the configuration of inertia properties plays a key role in analyzing spacecraft energy level. The behavior of the momentum wheels is also studied analytically and numerically. Finally, the effectiveness of the proposed nonlinear control law for the momentum transfer is verified by conducting numerical simulations.

Roll/yaw controller design using double gimbaled momentum wheel (더블김벌 모멘텀휠을 이용한 롤/요 제어기 설계)

  • 박영웅;방효충
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1099-1102
    • /
    • 1996
  • In this paper, roll/yaw attitude control of spacecraft using a double gimbaled wheel is discussed with two feedback controllers designed. One is a PD controller with no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed as a first order system and a lag parameter is designed for the yaw angle control. There are two case simulations for each controller ; constant disturbance torques and initial errors of nutation at motion. We obtain the results through simulations that steady-state error and rising time of yaw angle are determined by the compensator. Simulation parameters used in this study are the values of KOREASAT F1.

  • PDF

THE NUTATION DAMPING CONTROL OF A SPACECRAFT (인공위성의 미동현상 제어에 관한 연구)

  • 이창훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.281-295
    • /
    • 1994
  • In this paper, the Variable Structure System(VSS) theory with new continuous switching dynamic equation is used to design an automatic controller for the active nutation damping in momentum bias stabilized spacecraft. In the application of VSS theory to a linearized multivariable system with the nutation damping systems, there exist some disadvantages such as how to determine the switching gains and how to reduce the chattering phenomina and reaching phase in input and state trajectories. To solve these drawbacks, this paper presents the continuous switching dynamic equation instead of the discontinuous switching logics to obtain the sliding mode. The new design approach is much simpler than the VSS theory. And there do not exist chattering phenomina in this method because the obtained control inputs are continuous. Simultaneously the reaching phase is reduced by a suitable choice of design factor.

  • PDF

KOREASAT On-Orbit Normal Mode Attitude Control System (무궁화위성의 정상운용모드에서의 자세제어 시스팀)

  • 김동환;원종남;김성중;강성수;김한돌;이명수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.505-514
    • /
    • 1994
  • Koreasat spacecraft requires accurate and reliable attitude control to provide beam pointing for tenyear long communication and direction broadcasting services. This paper describes the detailed design and performance of an on-orbit normal mode attitude control subsystem for the spacecraft. Koreasat used a momentum wheel which has nominal momentum 475in-1b sec(547.6cm-kg sec) aligned with the pitch axis to control pitch attitude and provide gyroscopic stiffness in roll/yaw plane and used a 300 atm magnetic torquer to control the roll and yaw attitudes. An Earth Sensor Assembly (ESA) is used to provide pitch and roll information for the on-board micropocessor. The roll/yaw control used bang-off-bang control and while pitch axis control used proportional and integral control law. Control system errors during the operational normal mode are 0.03 deg, 0.1 deg and 0.01 deg in roll, yaw and pitch axes, respectively. Current attitude control system provides adequate control performances to capture initial attitude errors and spacecraft nutation.

  • PDF

Neural Network based Three Axis Satellite Attitude Control using only Magnetic Torquers

  • Sivaprakash, N.;Shanmugam, J.;Natarajan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1641-1644
    • /
    • 2005
  • Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. This actuation principle has been a topic of research since earliest satellites were launched. Earlier magnetic control has been applied for nutation damping for gravity gradient stabilized satellites, and for velocity decrease for satellites without appendages. The three axes of a micro-satellite can be stabilized by using an electromagnetic actuator which is rigidly mounted on the structure of the satellite. The actuator consists of three mutually-orthogonal air-cored coils on the skin of the satellite. The coils are excited so that the orbital frame magnetic field and body frame magnetic field coincides i.e. to make the Euler angles to zero. This can be done using a Neural Network controller trained by PD controller data and driven by the difference between the orbital and body frame magnetic fields.

  • PDF

Attitude Controller Design for a Bias Momentum Satellite with Double Gimbal (더블김벌을 장착한 바이어스 모멘텀 위성의 자세제어기 설계)

  • Park, Young-Woong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.34-42
    • /
    • 2004
  • In this paper, a double gimbal is used for roll/yaw attitude control of spacecraft and two feedback controllers are designed. One is a PD controller of no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed a first order system and a lag parameter is designed for the control of yaw angle. There are two case simulations for each of controllers; constant disturbance torques and initial errors of nutation. We obtain the results through simulations that a steady-state error and a rising time of yaw angle are developed by the compensator. In this paper, simulation parameters use the values of KOREASAT 1.

Roll/Yaw Momentum Management Method of Pitch Momentum Biased Spacecraft (피치 모멘텀 바이어스 위성시스템의 롤/요축 모멘텀 제어방식)

  • Rhee, Seung-Wu;Ko, Hyun-Chul;Jang, Woo-Young;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.669-677
    • /
    • 2009
  • In general, the pitch momentum biased system that induces inherently nutational motion in roll/yaw plane, has been adapted for geosynchronous communications satellites. This paper discusses the method of roll attitude control using yaw axis momentum management method for a low earth orbit(LEO) satellite which is a pitch momentum biased system equipped with only two reaction wheels. The robustness of wheel momentum management method with PI-controller is investigated comparing with wheel torque control method. The transfer function of roll/yaw axis momentum management system that is useful for attitude controller design is derived. The disturbance effect of roll/yaw axis momentum management system for attitude control is investigated to identify design parameters such as magnitude of momentum bias and to get the insight for controller design. As an example, the PID controller design result of momentum management system for roll/yaw axis control is provided and the simulation results are presented to provide further physical insight into the momentum management system.

A Study on HAUSAT-2 Momentum Wheel Start-up Method (초소형위성 HAUSAT-2 모멘텀 휠 Start-up 방안 연구)

  • Lee, Byung-Hoon;Kim, Soo-Jung;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.73-80
    • /
    • 2005
  • This paper addresses a newly proposed start-up method of the HAUSAT-2 momentum wheel. The HAUSAT-2 is a 25kg class nanosatellite which is stabilized to earth pointing by 3-axis active control method. A momentum wheel performs two functions. It provides a pitch-axis momentum bias while measuring satellite pitch and roll attitude. Pitch control is accomplished in the conventional way by driving a momentum wheel in response to pitch attitude errors. Precession control and nutation damping are provided by driving the pitch axis magnetic torquer. A momentum wheel is nominally spinning at a particular rate and changes speed. This simulation study investigates the feasibility and performance of a proposed strategy for starting-up the wheel. A proposed strategy to start-up the wheel shows that a pitch momentum wheel can be successfully started-up to its nominal speed from rest and be stabilized to nadir pointing.