• Title/Summary/Keyword: Numerical wave modeling

Search Result 274, Processing Time 0.023 seconds

Data Reduction and Analysis Technique for the Resonant Column Testing by Its Theoretical Modeling (공진주 실험의 이론적 모델링에 의한 자료분석 및 해석기법의 제안)

  • 조성호;황선근;강태호;권병성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.291-298
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.

  • PDF

A Field Application of Crosshole Seismic Survey to the Detection of Tunnel (터널위치 규명을 위한 시추공 탄성파탐사 현장 응용)

  • 김중열;김유성
    • The Journal of Engineering Geology
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 1997
  • This paper shows that crosshole seismic survey allows to detect even a small size of underground tunnel (about 2m$\times$2m). Such a small tunnel (e.g. infiltration tunnel) causes diffraction, as the seismic wave propagates, which results in distinctive variations of traveltime and amplitude of the first arrivals. This effect (or tunnel effect) is a typical indicator for the existence of tunnel and thereby an information about the tunnel location can be obtained. It was shown that the tunnel effect illustrated by numerical modeling (FDM) could be also observed in field measurements. The depth and shape of the tunnel were determined by a simplified processing method based on the use of amplitude variation of the first arrivals. The estimated location of the tunnel was well matched to that of the real tunnel.

  • PDF

Development of Effective Analytical Signal Models for Functional Microwave Imaging

  • Baang, Sung-Keun;Kim, Jong-Dae;Lee, Yong-Up;Park, Chan-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.471-476
    • /
    • 2007
  • Various active microwave imaging techniques have been developed for cancer detection for past several decades. Both the microwave tomography and the UWB radar techniques, constituting functional microwave imaging systems, use the electrical property contrast between normal tissues and malignancies to detect the latter in an early development stage. Even though promising simulation results have been reported, the understanding of the functional microwave imaging diagnostics has been relied heavily on the complicated numerical results. We present a computationally efficient and physically instructive analytical electromagnetic wave channel models developed for functional microwave imaging system in order to detect especially the breast tumors as early as possible. The channel model covers the propagation factors that have been examined in the previous 2-D models, such as the radial spreading, path loss, partial reflection and transmission of the backscattered electromagnetic waves from the tumor cell. The effects of the system noise and the noise from the inhomogeneity of the tissue to the reconstruction algorithm are modeled as well. The characteristics of the reconstructed images of the tumor using the proposed model are compared with those from the confocal microwave imaging.

Predicting Micro-Thickness of Phase Fronts in Propellants (추진제의 마이크로 스케일 상면 두께 예측)

  • Yoh Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-21
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF

Numerical Modeling of Antenna Transmission for Borehole Ground-Penetrating Radar -Code Development- (시추공 레이다를 위한 안테나 전파의 수치 모델링 -프로그램 개발-)

  • Chang, Han-Nu-Ree;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.265-270
    • /
    • 2006
  • High-frequency electromagnetic (EM) wave propagation phenomena associated with borehole ground-penetrating radar (GPR) surveys are complex. To improve the understanding of governing physical processes, we present a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with borehole GPR surveys. The algorithm can be easily implemented perfectly matched layers for absorbing boundaries, frequency-dependent media, and finite-length transmitter antenna.

  • PDF

Numerical modeling of underwater explosion phenomena (수중 폭발현상에 대한 전산해석)

  • Lee Jaimin;Kuk Jeong-Hyun;Choi Kyung Young;Cho Yong Soo;Song So-young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.1-14
    • /
    • 1998
  • Underwater explosion properties for TNT, an ideal explosive, and DXD-04, a nonideal explosive, were numerically modeled with a one-dimensional Lagrangian hydrodynamic code. The equation of state parameters for detonation products for TNT and DXD-04 were obtained from the BKW code, assuming complete reaction. Burn of TNT was modeled by using the Chapman-Jouguet(CJ) volume burn technique, a programmed-burn technique, assuming instantaneous detonation reaction. Burn of DXD-04 was modeled by using the same technique and by using the reaction rate calibrated from two-dimensional steady-state detonation experiments. The calculations for TNT reproduced the experimental peak pressure of the shock wave propagating through water with an error of $3.0\%$ and the experimental oscillation period of the bubble formed of detonation products with an error of $2.3\%$. For DXD-04, the CJ volume burn technique could not reproduce the experimental observations. When the reaction rate calibrated from two-dimensional steady-state detonation experimental data, the calculated peak pressure was slightly higher by $7.3\%$ than the experimental data, but the calculated shock profile was in good agreement. The bubble period was reproduced with an error of $1.8\%$. These results demonstrated that underwater explosion properties for an ideal explosive can be predicted by using a programmed burn technique, and that, however, those for a nonideal explosive can be predicted only when a well-calibrated reaction rate is used.

  • PDF

An Analysis of Unsteady Flow with Preissmann Scheme (Preissmann 기법에 의한 1차원 부정류의 해석)

  • 이종태
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1982.07a
    • /
    • pp.27-32
    • /
    • 1982
  • In other to make a numerical modeling for the one dimensional unsteady flow which expressed by Saint Venant partial differential equations, Preissman's implicit scheme was used, and it's stability and accuracy was investigated. By introducing recurrence relations make it possible to use double sweep algorithm. Effective parameters to the result were the values df the $$ and the Chezy coefticient. In other to get numberical solutions with enough accuracy, $$ should not be far from the value of1, and when the criteria of the $$ was 0.6<$$<1.0, the result was alaways stable for any condition. This model should be calibrated by real fileld data, and expected to be developed for the simulation of the river system and to the long wave analysis for one dimensional coastal zone problem.

  • PDF

Volume Integral Expressions for Numerical Computation of the Dynamic Energy Release Rate (동적(動的)에너지 방출율(放出率)의 수치해석(數値解析)을 위한 체적적분식(體積積分式))

  • Koh, Hyun Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.65-73
    • /
    • 1989
  • Continuum formulations for the expressions of dynamic energy release rates and computational methods for dynamic stress intensity factors are developed for the analysis of dynamic fracture problems subjected to stress wave loading. Explicit volume integral expressions for instantaneous dynamic energy release rates are derived by modeling virtual crack extensions with the dynamic Eulerian-Lagrangian kinematic description. In the finite element applications a finite region around a crack-tip is modeled by using quarter-point singular isoparametric elements, and the volume integrals are evaluated for each crack-tip element during virtual crack extensions while the singularity is maintained. It is shown that the use of the present method is more reliable and accurate for the dynamic fracture analysis than that of other path-independent integral methods when the effects of stress waves are significant.

  • PDF

Modeling of high energy laser heating and ignition of high explosives (고출력 레이저에 의한 가열과 폭약의 점화 모델링)

  • Lee, Kyung-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • We present a model for simulating high energy laser heating of metal for ignition of energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short (femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of RDX, TATB, and HMX are compared to experimental results. The experimental and numerical results are in good agreement.

The Northern Sea Route Transit Modeling of Icebreaking Cargo Vessels (쇄빙상선의 북극해 항로 항행 모델링)

  • Jeong, Seong-Yeob;Choi, Kyung-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.340-347
    • /
    • 2007
  • Main purpose of the study is to develop a transit model for icebreaking cargo vessels in the Northern Sea Route and to select optimum sea routes with the shortest navigation time and the lowest operation cost. This numerical model executed with basic information such as ship capabilities, transit directions and months of transit, can calculate total transit distance and elapsed time, mean speed, operation cost for each vessel. In the transit model. environment information such as the site-specific ice conditions, wave and wind states are utilized for four different months (April, June, August, and October) along the Northern Sea Route. The model also defines a necessary period of an icebreaker escort. Then the optimum sea routes are selected and visually displayed on the digital map using a commercial software ArcGIS. Usefulness of the selected sea routes is discussed.