• Title/Summary/Keyword: Numerical towing tank

Search Result 68, Processing Time 0.025 seconds

An Experimental Study on Stern Flow around a VLCC model with Drift Angles (사항 중인 대형유조선 모형 주위의 선미 유동장에 관한 실험적 연구)

  • Wu-Joan Kim;Do-Hyun Kim;Yeon-Gyu Kim;Sun-Young Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.52-61
    • /
    • 2001
  • It is necessary to obtain the well-documented local flow measurement data for the validation of CFD prediction of hydrodynamic performance. In the present paper the local flow fields around the stern region of a VLCC model with drift angles of $0^{\circ},\;5^{\circ},\;and\;10^{\circ}$ are measured. Mean velocity components are documented at St. 2 and A.P. of both port and starboard side of KVLCC in KRlSO towing tank. Flow information associated with the formation of four discrete vortices in the stern region is explored. The present experimental data can provide a good test case to validate the accuracy of numerical modeling for stern flow and maneuverability prediction of modern tanker hull forms.

  • PDF

Computational and Experimental Studies on Added Resistance of AFRAMAX-Class Tankers in Head Seas (선수파 중 AFRAMAX급 유조선의 부가저항에 대한 실험과 수치계산)

  • Oh, Seunghoon;Yang, Jinho;Park, Sang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.471-477
    • /
    • 2015
  • When a ship sails in a seaway, the resistance on a ship increases due to incident waves and winds. The magnitude of added resistance amounts to about 15–30% of a calm-water resistance. An accurate prediction of added resistance in waves, therefore, is essential to evaluate the performance of a ship in a real sea state and to design an optimum hull form from the viewpoint of the International Maritime Organization (IMO) regulations such as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI). The present study considers added resistance problem of AFRAMAX-class tankers with the conventional bow and Ax-bow shapes. Added resistance due to waves is successfully calculated using 1) a three-dimensional time-domain seakeeping computations based on a Rankine panel method (three-dimensional panel) and 2) a commercial CFD program (STAR-CCM+). In the hydrodynamic computations of a three-dimensional panel method, geometric nonlinearity is accounted for in Froude-Krylov and restoring forces using simple wave corrections over exact wet hull surface of the tankers. Furthermore, a CFD program is applied by performing fully nonlinear computation without using an analytical formula for added resistance or empirical values for the viscous effect. Numerical computations are validated through four degree-of-freedom model-scale seakeeping experiments in regular head waves at the deep towing tank of Hyundai Heavy Industries.

Resistance Performance of Korean Small Coastal Fishing Boat in Low-Speed Range (한국 저속 소형 연안어선의 저항성능)

  • Jee, Hyun-Woo;Lee, Young-Gill;Kang, Dae-Sun;Ha, Yoon-Jin;Choi, Young-Chan;Yu, Jin-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.1
    • /
    • pp.10-23
    • /
    • 2009
  • Korean small coastal fishing boats have the different kind of fisheries and customs against Japanese fishing boats. Those bring some influences on the principal parameters of hull form. In same displacement, Korean small coastal fishing boat has generally shorter length, draft and wider breadth than Japanese fishing boat. Furthermore, even though the parameters of each hull form are similar, it is known that the resistance performance of Korean small coastal fishing boat is worse than that of Japanese fishing boat. In this study, the representative hull forms of Korean and Japanese small coastal fishing boats are selected and compared to evaluate the resistance performance of Korean fishing boat in low-speed range. The hull form of the Korean fishing boat is modified as comparison with that of the Japanese fishing boat to confirm the partial characteristic differences between the hull forms and the resistance performances. The representative partial characteristics of hull form are the gradient of chine line, keel shape and stern length. The resistance performances of the modified hull forms are evaluated by INHAWAVE which is one of CFD program and model tests in towing tank. The results of the present study will be used to improve the resistance performance and to develop the practical hull form of Korean small coastal fishing boats as principal data in the preliminary hull form design of fishing boats.

A Study on the Improvement of Resistance Performance for G/T 4.99ton Class Korean Coastal Fishing Boats (G/T 4.99톤급 한국 연안어선의 저항성능 개선에 관한 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Jee, Hyun-Woo;Park, Ae-Seon;Choi, Young-Chan;Ha, Yoon-Jin;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Korean fishing boats have had appropriate hull forms for the safety, stability and convenience of fishing ability. However, Korean fishermen are recently concerned about the resistance performance and speed of Korean fishing boats, because the prices of fuel oil are gradually risen, also the exhausting of fish resources and the demand of high speed fishing boats are increased. Therefore, the necessity of the study on the improvement of resistance performance for Korean small coastal fishing boats is gradually increased. This study compares the hull form characteristics of Korean fishing boats with those of Japanese fishing boats, and the hull form of a representative Korean fishing boat is modified. From the modification of the hull form parameters for the Korean fishing boat, the improvement of resistance performances is evaluated. Moreover, the increase of resistance performances is also achieved from the modification of local characteristics for the hull form of the Korean fishing boat. A computational method and ship model tests in towing tank are used for the conformations of the improvement of resistance performance.

A Study on the Improvement of Hull-Form Design for Propulsion Type Change of Net Boat Mounted on Tuna Purse Seiner (다랑어 선망어선 탑재용 보조 작업선의 추진기 타입 변화에 의한 선형 개선 연구)

  • Lim, Jun-Taek;Jang, Ho-Yun;Lee, Kyoung-Woo;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.810-817
    • /
    • 2018
  • In Korea, tuna purse seine fishery is the industry with the highest production volume in domestic deep-sea fishery. Research has been continuously carried out since the late 1980s, and research on modernization of technology has been actively conducted. However, while auxiliary works boats on the fishing vessels play an important role in the purse seine fishing, related research is not sufficient. In this study, we tried to rebuild the propulsion system of the Net-boat from the propeller to the waterjet type and to perform the hull form conversion to improve the resistance performance of the hull part and improve the motion performance. For this, we calculated the change of the fluid performance of the ship through computational numerical analysis. In addition, towing tank tests were carried out to verify the performance of the existing ship and the ship which changed the propulsion system. As a result, resistance performance of the waterjet type compared to the propeller type was improved by approximately 45 %. It was confirmed that this was due to reduction of the wetted surface area by removing net and improvements in hull form.

Dynamic Motions of Model Fish Cage Systems under the Conditions of Waves and Current (파랑 및 흐름중 모형 가두리 시설의 운동 특성)

  • KIM Tae-Ho;KIM Jae-O;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2001
  • In order to analyze the dynamic motions of fish cage systems made of a frame and a netting under the conditions of waves and current, the hydraulic model experiment at towing tank and the numerical computation using boundary integral element method based on linear potential theory were carried out on a square and a circular type of fish cage, The computed and measured results for the dynamic motions of model fish cage systems showed that the heave and pitch motions were almost unaffected by the inclusion of nets, while the surge motions were very reduced by drag force acting on them. In addition, irregular wave-induced motions of fish cages included non-negligible 2nd order harmonic components at high frequency nearly twice the wave frequency. The reason why these motions were considered was due to resonance or structural components of frames being overflown and out of water during a wave cycle. It was found that circular type was more desirable structure in the open sea than square one only in the respect of dynamic motions due to waves and current. Further verifications were needed considering hydrodynamic forces, fatigue life, and structure analysis based on long term stochastic waves including frequency and time domain for the purpose of analyzing and designing fish cage systems.

  • PDF

A Study on the Green Ship Design for Ultra Large Container Ship (대형 컨테이너 운반선의 그린쉽 설계에 관한 연구)

  • Kim, Mingyu;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2015
  • A study on the green ship design for Ultra Large Container Ship (ULCS, 18,000 TEU Class Container Ship) was performed based on the four step procedures of the initial design and hull form optimization to maximize economic and propulsive performance. The first, the design procedure for ULCS was surveyed with economic evaluation considering environmental rules and regulations. The second, the characteristics of single and twin skeg container ships were investigated in view of initial design and performances. The third, the hull form optimization for single and twin skeg ships with the same dimensions was conducted to improve the resistance and propulsive performances at design draught and speed by several variations and the results of the optimization were verified by numerical calculations of CFD and model test. The last, for the estimated operating profile of draught and speed, the hull forms of single and twin sked ships were optimized by CFD. From this study, the methodologies to optimize the hull form of ULCS were proposed with considerations during the green ship design and the improvement of the energy efficiency for the optimized hull forms was confirmed by the proposed formula of the total energy considering design conditions, operating profile and fuel oil consumption.

Overview of the Korean Marine Industry and VPP Analysis of a 28ft Sailing Yacht (대한민국의 해양 레저 시장 및 28ft급 세일요트의 VPP 성능해석 연구)

  • Yeongmin Park;Hoyun Jang;Minsu Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.365-372
    • /
    • 2024
  • The South Korean marine industry is emerging as a significant market, driven by the growing popularity of various water leisure activities, including sailing. This trend suggests a rising demand for sailing yachts. Consequently, since 2022, the design and development of a 28ft sailing yacht have been ongoing, supported by the government and the Ministry of Oceans and Fisheries, to promote yachting culture in South Korea. The Velocity Prediction Program (VPP) analysis was conducted using WinDesign during the preliminary design stage to evaluate performance and determine design parameters. The hydrodynamic model used for this vessel is based on regression methods developed from years of experience in naval architecture and yacht research at the Wolfson Unit, providing reliable estimates for most modern yachts. However, owing to the lack of specific hydrodynamic data from towing tank tests or CFD numerical analysis, verification of the hydrodynamic model has faced some challenges. Additionally, an incomplete weight estimate resulted in variable VCG values, potentially affecting stability and overall performance. The optimal boat speed for this vessel was determined at true wind speeds (TWS) of 4, 8, 12, 16, and 20 knots, using both the jib (up to 120° TWA) and the spinnaker (from 80° TWA). The optimized speed of the yacht was found to be comparable to that of international similar-class yachts.