• Title/Summary/Keyword: Numerical propulsion system simulation

Search Result 73, Processing Time 0.025 seconds

Axisymmetric Thermal Analysis of 3D Regenerative Cooling System (3차원 재생 냉각 시스템의 축대칭 열해석)

  • Kim Sung-In;Park Seung-O
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • Axisymmetric numerical thermal analysis for a 3-dimensional regenerative cooling system in a rocket engine is carried out. To predict the accurate heat transfer with the stiff temperature distribution, several tests have been conducted for the grid size, the properties variation of the coolant and the combustion gas depending on temperature. The axisymmetric heat flux model is defined using fin efficiencies and is designed to be equivalent to the heat flux of the 3-dimensional coolant channel. For comparison purpose, the 1-dimensional analysis using Bartz equation is also conducted. The performance of the present model in predicting the cooling characteristics of a 3-dimensional regenerative cooling system is compared with the 3-dimensional results of RTE(Rocket Thermal Evaluation). It is found that the present method predicts much closer results to those of RTE code than 1-dimensional analysis.

Performance Analysis of SITVC System with Various Secondary Injection Conditions (이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석)

  • Bae, Ji-Yeul;Song, Ji-Woon;Kim, Tae-Hwan;Cho, Hyung-Hee;Bae, Ju-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.116-121
    • /
    • 2011
  • Performance of Secondary Injection Thrust Vector Control system is investigated under various secondary injection operating conditions. 3-dimensional converging-diverging nozzle having 8 secondary injection nozzles is used in this numerical study. Total pressure of flow inside the nozzle is about 70bars, and total temperature set to 300K for cold flow simulation. Effect of secondary injection flow rate and injection nozzle configuration is considered in this research. Simulation is conducted with commercial CFD code Ansys Fluent v13. Spalart-Allmaras(1-equation)model is used for turbulence modeling with AUSM+ scheme. Various performance factors as Axial thrust, side force, system specific impulse ratio are considered and explained for system performance evaluation.

  • PDF

NUMERICAL SIMULATION OF TWO-DIMENSIONAL MICROORGANISM LOCOMOTION USING THE IMMERSED BOUNDARY METHOD (가상경계법을 적용한 2차원 미생물 이동에 관한 수치연구)

  • Maniyeri, Ranjith;Suh, Yong-Kweon;Kang, Sang-Mo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.164-169
    • /
    • 2009
  • Study on swimming of microorganisms like, sperm motility, cilia beating, bacterial flagellar propulsion has found immense significance in the field of biological fluiddynamics. Because of the complexity involved, it is challenging for the researchers to model such problems. Immersed boundary method has proved its efficacy in the field of biological fluiddynamics, The present work aims at performing a numerical study on the microorganism locomotion using the immersed boundary method proposed by Peskin[1]. A two-dimensional model of the microorganism is modeled as thin elastic filament described as a sine wave. The neutrally buoyant organism undergoing deformations is immersed in a viscous and incompressible fluid. The fluid quantities are described using Eulerian coordinates and the immersed body is represented by Lagrangian coordinates. The Eulerian and Lagrangian variables are connected by the Dirac delta function. The Navier-Stokes equations governing the fluid flow are solved using the fractional step method on a staggered Cartesian grid system. The developed numerical code in FORTRAN will be validated by comparing the numerical results with the available results.

  • PDF

Numerical Study on Normal Propagation Bimetallic Reaction Wave in Al/Ni Nano-Multilayers (알루미늄/니켈 나노박막다층 내 수직방향 이종금속 반응파 전파 해석연구)

  • Kim, Kyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.20-27
    • /
    • 2022
  • Present modeling study of nanoenergetics focuses on the numerical simulation of reaction wave propagation in normal direction across nanoscale multilayers of aluminum and nickel combination. The governing equations for atomic and thermal diffusion are employed in one-dimensional semi-infinitely alternating Al/Ni multilayered structures and the numerical results show the established patterns of quasi-steady intermetallic reaction waves. Also, the reaction wave speed is confirmed to be highly independent of reaction wave directions in such nanoenergetic structures.

Introduction of Numerical Simulation Techniques for High-Frequency Combustion Instabilities (고주파 연소불안정 예측을 위한 해석기술 개발 사례)

  • Kim, Seong-Ku;Joh, Miok;Han, Sanghoon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.68-77
    • /
    • 2017
  • High-frequency combustion instability results from a feedback coupling between the unsteady heat release rate and the acoustic waves formed resonantly in the combustion chamber. It can be modeled as thermoacoustic problems with various degrees of the assumptions and simplifications. This paper presents numerical analysis of self-excited combustion instabilities in a variable-length lean-premixed combustor and designs of passive control devices such as baffle and acoustic resonators in a framework of 3-D FEM Helmholtz solver. Nonlinear behaviors such as steep-fronted shock waves and a finite amplitude limit cycle are also investigated with a compressible flow simulation technique.

  • PDF

A Study of Numerical Analysis for Stage Separation Behavior of Two-body Vehicle (비행체 단분리 거동 예측에 대한 수치 연구)

  • Park, Geunhong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.91-98
    • /
    • 2018
  • A numerical investigation of stage separation behavior of a two-body vehicle focusing on its flow characteristics is carried out. For this simulation, the separation of a booster from a vehicle is modeled using a chimera grid system and calculated with commercial code, $CFD-FASTRAN^{TM}$. Consideration of spring force, gravity and relative acceleration of a booster is the essential factor of a realistic simulation. In this study, it is validated that the booster separation time decreases with an increase in flight Mach number and angle of attack. In view of results thus far achieved, it is expected that the dynamics modeling and boundary condition set-up applied in this study will be useful for estimating safe stage separation and event sequencing of flight tests.

Simulation of Gravity Feed Oil for Aeroplane

  • Lu, Yaguo;Huang, Shengqin;Liu, Zhenxia
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.732-736
    • /
    • 2008
  • The traditional method to calculate the gravity feed is to assume that only one tank in fuel system supplies the needed fuel to the engine, and then calculated for the single branch. Actually, all fuel tanks compete for supplying oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Firstly, the thesis gives the mathematical model for fuel flow pipe, pump, check valve and the simulation model for fuel tank. On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system, secondly. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Finally, we give a numerical example for a certain type of aircraft, achieved the variations of oil level and flow mass per second of each oil tanks. In addition, we also obtained the variations of the oil pressure of the engine inlet, and predicted the maximum time that the aeroplane could fly safely under gravity feed. These variations show that our proposed method of calculations is satisfactory.

  • PDF

Modeling of Space Shuttle Main Engine heat exchanger using Volume-Junction Method (Volume-Junction Method를 이용한 우주왕복선 액체로켓엔진 열교환기 모델링)

  • Cha, Jihyoung;Ko, Sangho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.213-217
    • /
    • 2017
  • Since more than 30% of the liquid rocket engine failures occur during the start-up process, and the Space Shuttle Main Engine (SSME) is especially sensitive to small changes in propellant conditions, a 2% error in the valve position or a 0.1sec timing error could lead to significant damage of the engine, simulation modeling of start-up process is important. However, there are many difficulties associated with engine start-up process caused by nonlinear mass flow and heat transfer characteristics associated with filling an unconditioned engine system with cryogenic propellants. In this paper, we modelled a SSME simulation model using partially Computational Fluid Dynamics (CFD) method to solve these problems and checked the performance by comparing with the performance of the simulation model using the lumped method under the state of normal condition.

  • PDF

Flow and Performance Analysis of Waterjet Propulsion System (워터제트 추진시스템의 유동 및 성능 해석)

  • Park Warn-Gyu;Jang Jin-Ho;Chun Ho-Hwan;Kim Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.8-14
    • /
    • 2004
  • The numerical analysis of a waterjet propulsion system was performed to provide detail understanding of complicated flow phenomena including interactions of intake duct, rotor, stator, and contracted discharge nozzle. The incompressible RANS equations were solved on moving multiblocked grid system. To handle interface boundary between rotor and stator, the sliding multiblock method was applied. The numerical results were compared with experiments and good agreement was obtained. The complicated viscous flow features of the waterjet, such as secondary flow inside the intake duct, the recovery of axial flow by the role of the stator, and tip and hub vortex, etc. were well analyzed by the present simulation. The performance of thrust and torque was also predicted.

Buzz Margin Control for Supersonic Intake Operating over Wide Range of Mach Number (넓은 마하수 영역에서의 초음속 흡입구 버즈마진 제어기법)

  • Park, Iksoo;Park, Jungwoo;Lee, Changhyuck;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • Buzz margin scheduling and control technique which are suitable to regulate stable and high pressure air in wide range of Mach number are suggested for fixed geometry of a supersonic intake. From the analysis of preceding study, most effective control variable is induced and scheduling law is newly suggested in a real application point of view. The appropriateness of the control law in wide range of Mach number is addressed by numerical simulation of controlled propulsion system. Also, the simulation for stabilization and tracking performances of the controller are studied to investigate the phenomena under flight maneuver and disturbances.