DOI QR코드

DOI QR Code

Numerical Study on Normal Propagation Bimetallic Reaction Wave in Al/Ni Nano-Multilayers

알루미늄/니켈 나노박막다층 내 수직방향 이종금속 반응파 전파 해석연구

  • Kim, Kyoungjin (Department of Mechanical System Engineering, Kumoh National Institute of Technology)
  • Received : 2021.10.26
  • Accepted : 2022.01.17
  • Published : 2022.02.28

Abstract

Present modeling study of nanoenergetics focuses on the numerical simulation of reaction wave propagation in normal direction across nanoscale multilayers of aluminum and nickel combination. The governing equations for atomic and thermal diffusion are employed in one-dimensional semi-infinitely alternating Al/Ni multilayered structures and the numerical results show the established patterns of quasi-steady intermetallic reaction waves. Also, the reaction wave speed is confirmed to be highly independent of reaction wave directions in such nanoenergetic structures.

본 나노에너지 기술 해석연구에서는 알루미늄/니켈 나노 다층박막구조 내 이종금속 반응파의 박막층 수직방향 전파현상을 대상으로 모델링 및 해석을 진행하였다. Al/Ni층이 교차하는 반무한영역에서 열 및 화학종 확산 방정식을 기반으로 1차원적 전산해석을 수행하였다. 해석결과로 이종금속 반응파의 수직방향 정상 전파 확립 등 반응파 특성을 발견하였다. 수평방향 전파현상 해석과 비교하여 이와 같은 나노구조물에서 반응파 자체전파속도에 대한 방향성 변화 영향이 매우 약하게 나타남을 확인하였다.

Keywords

Acknowledgement

본 연구는 금오공과대학교 학술연구비에 의하여 지원된 논문이다(과제번호: 2019-104-002).

References

  1. Mukasyan, A.S., Rogachev, A.S. and Aruna, S.T., "Combustion Synthesis in Nanostructured Reactive System," Advanced Powder Technology, Vol. 26, pp. 945-976, 2015.
  2. Dreizin, E.L., "Metal-Based Reactive Nanomaterials," Progress in Energy and Combustion Science, Vol. 35, pp. 141-167, 2009. https://doi.org/10.1016/j.pecs.2008.09.001
  3. Son, S.F., Asay, B.W., Foley, T.J., Yetter, R.A., Wu, M.H. and Risha, G.A., "Combustion of Nanoscale Al/MoO3 Thermite in Microchannels," Journal of Propulsion and Power, Vol. 23, pp. 715-721, 2007. https://doi.org/10.2514/1.26090
  4. Adams, D.P., "Reactive Multilayers Fabricated by Vapor Deposition: A Critical Review," Thin Solid Films, Vol. 576, pp. 98-128, 2015. https://doi.org/10.1016/j.tsf.2014.09.042
  5. Gavens, A.J., Van Heerden, D., Mann, A.B., Reiss, M.E. and Weihs, T.P., "Effect of Intermixing on Self-Propagating Exothermic Reactions in Al/Ni Nano- laminate Foils," Journal of Applied Physics, Vol. 87, pp.1255-1263, 2000. https://doi.org/10.1063/1.372005
  6. Gachon, J.C., Rogachev, A.S., Grigoryan, H.E., Illarionova, E.V., Kuntz, J.J., Kovalev, D.Yu., Nosyrev, A.N., Sachkova, N.V. and Tsygankov, P.A., "On the Mechanism of Heterogeneous Reaction and Phase Formation in Ti/Al Multilayer Nanofilms," Acta Materialia, Vol. 53, pp. 1225-1231, 2005. https://doi.org/10.1016/j.actamat.2004.11.016
  7. Knepper, R., Snyder, M.R., Fritz, G., Fisher, K. and S., Knio, O.M., and Weihs, T.P, "Effect of Varying Bilayer Spacing Distribution on Reaction Heat and Velocity in Reactive Multilayers," Journal of Applied Physics, Vol. 105, pp. 083504-19, 2009. https://doi.org/10.1063/1.3087490
  8. Salloum, M. and Knio, O.M., "Simulation of Reactive Nanolaminates Using Reduced Models: I. Basic Formulation," Combustion and Flame, Vol. 157, pp. 288-295, 2010. https://doi.org/10.1016/j.combustflame.2009.06.019
  9. Baginski, T.A., Taliaferro, S.L. and Fahey W.D., "Novel Electro-Explosive Device Incorporating a Reactive Laminated Metallic Bridge," Journal of Propulsion and Power, Vol. 17, pp. 184-189, 2001. https://doi.org/10.2514/2.5726
  10. Tanaka, S., Kondo, K., Habu, H., Itoh, A., Watanabe, M., Hori, K. and Esashi, M., "Test of B/Ti Multilayer Reactive Igniters for a Micro Solid Rocket Array Thruster," Sensors and Actuators A: Physical, Vol. 144, pp. 361-366, 2008. https://doi.org/10.1016/j.snb.2008.11.051
  11. Choi, J. and Kim, K., "A Three-dimensional Modeling of Microscale Thin-film Initiator with Boron/titanium Multilayers," Journal of Propulsion and Energy, Vol. 1, pp. 66-73, 2020.
  12. Kim, K., "A Microscale Explosive Initiator Integrated with a Reactive Thin-Filmed Metallic Bridge of Boron/Titanium Laminated Layers," Microsystem Technologies, Vol. 27, pp. 1379-1388, 2021. https://doi.org/10.1007/s00542-018-4265-8
  13. Kim, K., "Analysis of Self-Propagating Intermetallic Reaction in Nanoscale Multilayers of Binary Metals," Metals and Materials International, Vol. 23, pp. 326-335, 2017. https://doi.org/10.1007/s12540-017-6379-4
  14. Kim, K., "Numerical Investigation of the Self-Propagation of Intermetallic Reaction Waves in Nanoscale Aluminum/Nickel Reactive Multilayer Foils," Korean Journal of Metals and Materials, Vol. 57, pp. 97-107, 2019. https://doi.org/10.3365/kjmm.2019.57.2.97
  15. Salloum, M. and Knio, O.M., "Simulation of Reactive Nanolaminates Using Reduced Models: II. Normal Propagation," Combustion and Flame, Vol. 157, pp. 436-445, 2010. https://doi.org/10.1016/j.combustflame.2009.08.010
  16. Kim, K. and Park, J.Y., "Computational Study of Intermetallic Reaction Propagation in Nanoscale Boron/Titanium Metallic Multilayers," Journal of the Korean Society of Propulsion Engineers, Vol. 21, pp. 10-17, 2017.