• Title/Summary/Keyword: Numerical method

Search Result 18,761, Processing Time 0.041 seconds

Numerical Analysis of Conjugate Heat Transfer in a Curved Piping System Subjected to Internal Stratified Laminar Flow (층류 열성층유동 곡관에 대한 복합열전달 수치해석)

  • Jo Jong Chull;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internal laminar thermally-stratified flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in non-orthogonal coordinate systems is presented. Numerical calculations are performed for the transient evolution of thermal stratification in two curved pipes, where one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results for the cases of pipes with thick wall such as safety related-piping systems of nuclear power plant.

Numerical Range Criteria for Classification of Value Engineering Proposals based on Value Improvement Types (VE제안의 가치향상 유형별 수치적 범위기준 제시)

  • Nam, Keong-Woo;Jang, Myunghoun
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.287-294
    • /
    • 2018
  • Since its introduction in Korea, design VE has widely been used as a means to enhance values in the construction industry. However, a greater emphasis is still placed on cost reduction in approach attitudes and performance evaluations on the implementation of design VE. In this regard, this study presented a performance evaluation method for cost, function, and value of VE proposals. Numerical criteria on the increase and decrease of cost and function that can classify the value enhancement type of VE proposals were proposed based on the performance evaluation method. It is expected that the use of numerical criteria for the type classification of VE proposal, and cost and performance evaluation method proposed in this study will make it possible to conduct a clear and more intuitive evaluation of VE proposal. However, it is appropriate to use the numerical criteria as a guideline to apply the new performance evaluation method for VE proposals. Therefore, it is necessary to conduct a statistical analysis with a wider range of users after the repeated application of the findings of this study, and thus to carry out research for presenting the numerical criteria for various types of users.

Comparison of Modified Berggren Method with Numerical Method for the Frost Penetration Depth (수정 Berggren 법과 수치해석법에 의한 동결깊이 산정 비교)

  • Kim, Kwangjin;Kim, Youngchin;Lee, Daeyoung;Lee, Hayoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.21-29
    • /
    • 2013
  • This paper presents computed frost penetration depths for a number of cross sections of multilayered system including insulation. Results of Modified Berggren method were compared with those of numerical analysis which is based on finite element method with phase change. For the homogeneous single layer medium, Modified Berggren method gives almost the same results as finite element based numerical method. For the multilayered systems with insulation, Modified Berggren method shows, however, inaccurate results compared with FEM results. Therefore numerical solution based on finite element or finite difference should be used in place of Modified Beggren method to estimate the frost penetration depth for the layered medium with insulation.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

A PARAMETRIC SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.45-57
    • /
    • 2001
  • A parametric scheme is proposed for the numerical solution of the nonlinear Boussinesq equation. The numerical method is developed by approximating the time and the space partical derivatives by finite-difference re placements and the nonlinear term by an appropriate linearized scheme. The resulting finite-difference method is analyzed for local truncation error and stability. The results of a number of numerical experiments are given for both the single and the double-soliton wave. AMS Mathematics Subject Classification : 65J15, 47H17, 49D15.

Numerical Simulations of Flood Inundations in Guri (구리지역의 홍수범람해석)

  • Yu Jae Hong;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1174-1178
    • /
    • 2005
  • In this study, flood inundations have been simulated by using the numerical model FLUMEN solving the shallow-water equations with a finite volume method. Before applying to a real problem, the numerical model is first applied to simplified problems. Obtained numerical results are verified by comparing to available analytical solutions and laboratory measurements. Reasonable agreements are observed. The model is then applied to a simulation of flood events with real geometries. The results of the present study provide basic informations for a flood inundation map.

  • PDF

The variation of critical current by the formation of crack in a high-temperature superconducting tape (크랙에 의한 고온 초전도체 테이프의 임계전류 특성변화)

  • 박을주;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The variation of critical current by the formation of crack in a high temperature super-conducting tape was studied by experimental and numerical analyses. The current-voltage relation of HTS tape is measured by the four-point measurement method. Numerical analyses are used to solve two dimensional heat conduction equation, considering the temperature distribution. By comparing current-voltage relation of experimental and numerical results, the validity of numerical method is verified.

HOPF BIFURCATION IN NUMERICAL APPROXIMATION FOR DELAY DIFFERENTIAL EQUATIONS

  • Zhang, Chunrui;Liu, Mingzhu;Zheng, Baodong
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.319-328
    • /
    • 2004
  • In this paper we investigate the qualitative behaviour of numerical approximation to a class delay differential equation. We consider the numerical solution of the delay differential equations undergoing a Hopf bifurcation. We prove the numerical approximation of delay differential equation had a Hopf bifurcation point if the true solution does.

COMPACTLY SUPPORTED WAVELET AND THE NUMERICAL SOLUTION OF THE VLASOV EQUATION

  • Benhadid, Yacine
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.17-30
    • /
    • 2007
  • A new scheme for solving the Vlasov equation using a compactly supported wavelets basis is proposed. We use a numerical method which minimizes the numerical diffusion and conserves a reasonable time computing cost. So we introduce a representation in a compactly supported wavelet of the derivative operator. This method makes easy and simple the computation of the coefficients of the matrix representing the operator. This allows us to solve the two equations which result from the splitting technique of the main Vlasov equation. Some numerical results are exposed using different numbers of wavelets.

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF