Comparison of Modified Berggren Method with Numerical Method for the Frost Penetration Depth

수정 Berggren 법과 수치해석법에 의한 동결깊이 산정 비교

  • Published : 2013.06.01

Abstract

This paper presents computed frost penetration depths for a number of cross sections of multilayered system including insulation. Results of Modified Berggren method were compared with those of numerical analysis which is based on finite element method with phase change. For the homogeneous single layer medium, Modified Berggren method gives almost the same results as finite element based numerical method. For the multilayered systems with insulation, Modified Berggren method shows, however, inaccurate results compared with FEM results. Therefore numerical solution based on finite element or finite difference should be used in place of Modified Beggren method to estimate the frost penetration depth for the layered medium with insulation.

본 논문은 수정 Berggren 법과 상전이 현상을 모델링할 수 있는 유한요소 수치해석법을 사용하여 단열재를 포함한 대표적인 다층 지반에 대하여 동결깊이를 산정하여 비교 분석하였다. 균일한 단층 지반에서 수정 Berggren 법은 유한요소 수치해석법과 거의 동일한 결과를 보여주고 있다. 그러나 단열재를 포함한 다층 지반에서 수정 Berggren 법은 유한요소 수치해석 결과와 비교할 때 정확하지 않은 결과를 나타내고 있다. 따라서 단열재를 포함한 다층 지반에서는 수정 Berggren 법 대신에 유한요소나 유한차분법에 기반을 둔 수치해석법을 사용하여 동결깊이를 산정하여야 할 것으로 사료된다.

Keywords

References

  1. Aitken, G. W. and Berg, R. L. (1968), Digital solution of modified Berggren equation to calculate depth of freeze or thaw in multilayered systems, Special Report 122, CRREL, pp. 17-18.
  2. Aldrich, H. P. and Paynter, H. M. (1953), Analytical studies of freezing and thawing in soils, Tech. Report 42. ACFEL., pp. 1-103.
  3. Aldrich, H. P. and Paynter, H. M. (1966), Depth of frost penetration in non-uniform soil, Special Report 104, CRREL, pp. 1-11.
  4. Berggren, W. P. (1943), Prediction of temperature-distribution in frozen soils, Transaction of the American Geophysical Union, Vol. 24, Part 3, pp. 71-77. https://doi.org/10.1029/TR024i003p00071
  5. Braley, W. A. and Zarling, J. P. (1990), MUT1D multilayer user-friendly thermal model in 1 dimension, FHWA-AK-RD-90-02, University of Alaska Fairbanks, Fairbanks, Alaska, USA, pp. 24-27.
  6. Carslaw, H. S. and Jaeger, J. C. (1959), Conduction of heat in solids, 2th Edition, Oxford University Press, New York, pp. 282-291.
  7. Comini, G., Del Guidice, S., Lewis, R. W. and Zienkiewicz, O. C. (1974), Finite element solution of non-linear heat conduction problems with special reference of phase change, International Journal of Numerical Methods for Engineering, Vol. 8, Issue 3, pp. 613-624. https://doi.org/10.1002/nme.1620080314
  8. Donea, J. (1974), On the accuracy of finite element solutions to the transient heat-conduction equation, International Journal of Numerical Methods for Engineering, Vol. 8, Issue 1, pp. 103-110. https://doi.org/10.1002/nme.1620080109
  9. Hsu, T. R. and Pizey, G. (1981), On the prediction of the fusion rate of ice by finite element analysis, Journal of Heat Transfer, Vol. 103, No. 4, pp. 727-732. https://doi.org/10.1115/1.3244533
  10. Ingersoll, L. R., Zobel, O. J. and Ingersoll, A. C. (1954), Heat conduction, Rev., Edition, University of Wisconsin Press, Madison, pp. 1-325.
  11. Kim, Y. S., Kang, J. M., Lee, J. G., Hong, S. S. and Kim, K. J. (2012), Finite element modeling and analysis for artificial ground freezing in egress shafts, KSCE Journal of Civil Engineering, Vol. 16, Issue 6, pp. 925-932 (in Korean). https://doi.org/10.1007/s12205-012-1252-y
  12. Kreith, F. and Bohn, M. S. (2001), Principles of heat transfer, 6th Edition, Brooks/Cole, California, pp. 133-134.
  13. Lees, M. (1966), A linear three-level difference scheme for quasilinear parabolic equations, Mathematics of Computation, Vol. 20, No. 96, pp. 516-522. https://doi.org/10.1090/S0025-5718-1966-0207224-5
  14. Lunardini, V. J. (1980), The neumann solution applied to soil systems, CRREL Report 80-22, Army Cold Regions Research and Engineering Laboratory, New Hampshire, pp. 1-5.
  15. Matsumaru, T., Kojima, K., Tominaga, M., Maruyama, O. and Ishizuka, M. (2006), Calculation method of frost penetration depth for railway subgrade considering thermal characteristics of multilayer materials, RTRI Resport, Vol. 20, No. 12, pp. 59-61.
  16. Neumann, F. (1860), Lectures given in the 1980', Riemann-Weber die partiellen differentialgleichungen der mathematischen physik, 5th Edition, 1912, Vol. 2, p. 121.
  17. Sipola, J. (2011), Tjalintrangning i fyllningsdammars tatkarna i anslutning till betongkonstruktioner, Ph. D. Dissertation, Lulea Tekniska University, Sweden, pp. 128-129.
  18. Stefan, J. (1889), On the theory of ice formation, particularly ice formation in the artic ocean, S-B Wien Akad, Vol. 98, No. 173, pp. 965-983 (in German).
  19. Zienkiewicz, O. C. and Taylor, R. L. (2005), The finite element method for solid and structural mechanics, 6th Edition, Elsevier Butterworth-Heinemann, Massachusetts, pp. 37-38.