• Title/Summary/Keyword: Numerical identification

Search Result 671, Processing Time 0.026 seconds

System Identification for Structural Vibration of Layered Stone Pagoda System (적층식 석탑의 진동 시스템 인식)

  • Kim, Byeong Hwa
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.237-244
    • /
    • 2017
  • This study proposes a numerical model to explain the closely placed double modes in the vibration of a layered stone pagoda system. The friction surface between the stones is modelled as the Timoshenko finite element while each stone layer is modelled as a rigid body. It is assumed that the irregular asperity on the friction surface enables the stone to be excited. This results in the closely placed modes that are composed of natural modes and self-excited modes. To examine the validity of the proposed model, a set of modal testing and analysis for a layered stone pagoda mock-up model has been conducted and a set of closely placed double modes are extracted. Applying the extended sensitivity-based system identification technique, the various system parameters are identified so that the modal parameters of the proposed numerical model are the same with those of the experimental mock-up. For a horizontal impulse excitation, the simulated acceleration responses are compared with measurements.

Robust Identification of Time Domain Using Recursive Computation (반복계산을 이용한 시간영역의 견실동정)

  • Lee, Dong-Cheol;Joe, Cheol-Je;Bae, Jong-Il;Chung, Hwung-Hwan;Jo, Bong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2296-2298
    • /
    • 2001
  • This is to discuss on the robust identification method using the Caratheodory -Fejer theorem. The robust identification method in this paper points out the question at issue brought from numerical analysis in case of Zhou and Kimura method and carries out recursive computation considering the presence of probable noise. Effectiveness of the proposed method is verified theoretically through the numerical simulation.

  • PDF

Isolation and Numerical Identification of Streptomyces humidus strain S5-55 Antagonistic to Plant Pathogenic Fungi

  • Lim, Song-Won;Kim, Jeong-Dong;Kim, Biom-Seok;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.16 no.4
    • /
    • pp.189-199
    • /
    • 2000
  • To search for the antifungal substances, various actino-mycete isolates were obtained from various soils of Korea using plate dilution method on the humic acid vitamin agar plates. In the screening procedures using a dual culture method, 32 actionomycete isolates were selected, which showed the inhibitory activity against mycelial growth of plant pathogenic fungi Altirnaria mali, Colletotrichum gloeosporides, Fusarium oxysporum f.sp. cucumerinum, Magnaporthe grisea, Phytophthora capsici, and Rhizoctonia solani. Bioassay of the crude extracts from culture filtrates and mycelial mets revealed that 12 antagonistic actionomycetes produced highly active antifungal substances. Actinomycete strain S5-55 which showed the substantial antifungal activity against the tested fungi was selected for production of the antifungal substances. Based on the cytochemical and morphological characteristics, strain S5-55 was identified as a Streptomyces species. The results of the numerical identification using the TAXON program confirmed that Streptomyces strain S5-55 was identical with Streptomyces humidus including in TAXON major cluster 19. The production of antifungal substance was most favorable when S. humidus strain S5-55 was cultivated for 10 dats on soluble starch broth supplemented with $K_2$HPO$_4$. The antifungal substances active against the plant pathogenic fungi P. capsici and M. grisea were partially purified using $\textrm{C}_{18}$ reversed-phase column chromatography.

  • PDF

Damping identification procedure for linear systems: mixed numerical-experimental approach

  • El-Anwar, Hazem Hossam;Serror, Mohammed Hassanien;Sayed, Hesham Sobhy
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.203-217
    • /
    • 2013
  • In recent decades, it has been realized that increasing the lateral stiffness of structure subjected to lateral loads is not the only parameter enhancing safety or reducing damage. Factors such as ductility and damping govern the structural response due to lateral loads. Despite the significant contribution of damping in resisting lateral loads, especially at resonance, there is no accurate mathematical representation for it. The main objective of this study is to develop a damping identification procedure for linear systems based on a mixed numerical-experimental approach, assuming viscous damping. The proposed procedure has been applied to a laboratory experiment associated with a numerical model, where a hollow rectangular steel cantilever column, having three lumped masses, has been fixed on a shaking table subjected to different exciting waves. The modal damping ratio has been identified; in addition, the effect of adding filling material to the hollow specimen has been studied in relation to damping enhancement. The results have revealed that the numerically computed response based on the identified damping is in a good fitting with the measured response. Moreover, the filling material has a significant effect in increasing the modal damping.

Numerical Identification of a Streptomyces Strain Producing $eta$-Sactamase Inhibitor ($eta$-Lactamase 저해 물질을 생산하는 Streptomyces속 분리균주의 수리동정)

  • Kim, Myung-Kuk;Kim, Hyoung-Tae;Kim, Tae;Yang, Doo-Suck;Alan C. Ward;Michael Goodfellow;Hah, Yung-Chil;Lee, Kye-Joon
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.415-420
    • /
    • 1992
  • Numerical identification was carried out for an isolate of Streptomyces strain producing the extracellular .betha.-lactamase inhibitor. Fifty taxonbomic unit characters were tested and the data were analyzed numerically using the TAXON program. The isoalte was identified to the majro cluster 5 of Streptomyces and it was best matched to Strepstomyces omiyaensis which is a synonym of Streptomyces exfoliatus. Therefore, it was concluded that the isolate was identified to be a strain (SMF19) of Streptomyces exfoliatus.

  • PDF

Output-only modal identification approach for time-unsynchronized signals from decentralized wireless sensor network for linear structural systems

  • Park, Jae-Hyung;Kim, Jeong-Tae;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.59-82
    • /
    • 2011
  • In this study, an output-only modal identification approach is proposed for decentralized wireless sensor nodes used for linear structural systems. The following approaches are implemented to achieve the objective. Firstly, an output-only modal identification method is selected for decentralized wireless sensor networks. Secondly, the effect of time-unsynchronization is assessed with respect to the accuracy of modal identification analysis. Time-unsynchronized signals are analytically examined to quantify uncertainties and their corresponding errors in modal identification results. Thirdly, a modified approach using complex mode shapes is proposed to reduce the unsynchronization-induced errors in modal identification. In the new way, complex mode shapes are extracted from unsynchronized signals to deal both with modal amplitudes and with phase angles. Finally, the feasibility of the proposed approach is evaluated from numerical and experimental tests by comparing with the performance of existing approach using real mode shapes.

Output only system identification using complex wavelet modified second order blind identification method - A time-frequency domain approach

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.369-378
    • /
    • 2021
  • This paper reviewed a few output-only system identification algorithms and identified the shortcomings of those popular blind source separation methods. To address the issues such as less sensors than the targeted modal modes (under-determinate problem), repeated natural frequencies as well as systems with complex mode shapes, this paper proposed a complex wavelet modified second order blind identification method (CWMSOBI) by transforming the time domain problem into time-frequency domain. The wavelet coefficients with different dominant frequencies can be used to address the under-determinate problem, while complex mode shapes are addressed by introducing the complex wavelet transformation. Numerical simulations with both high and low signal-to-noise ratios validate that CWMSOBI can overcome the above-mentioned issues while obtaining more accurate identified results than other blind identification methods.

Force Identification and Sound Prediction of a Reciprocating Compressor for a Refrigerator (냉장고용 왕복동식 압축기의 가진력 규명 및 방사소음 예측)

  • Kim, Sang-Tae;Jeon, Gyeoung-Jin;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.437-443
    • /
    • 2012
  • In this paper, the hybrid method to identify the exciting forces and radiated noise generated from the reciprocating compressor was presented. In order to identify the exciting force, both the acceleration data measured at the compressor shell and numerical finite element model for the full set of compressor were used simultaneously. Applying the identified exciting forces to the numerical model, the velocity responses of all nodes at the shell were predicted. Finally the radiated noises from the vibrating shell were predicted by using the direct boundary element acoustic analysis. For precise numerical modeling, the stiffness of rubber mounts and body springs were identified experimentally from the natural frequencies measured by impact testing. The error of over-all sound pressure level between predicted noise and measured noise was about 2.9 dB.

Base isolated RC building - performance evaluation and numerical model updating using recorded earthquake response

  • Nath, Rupam Jyoti;Deb, Sajal Kanti;Dutta, Anjan
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.471-487
    • /
    • 2013
  • Performance of a prototype base isolated building located at Indian Institute of Technology, Guwahati (IITG) has been studied here. Two numbers of three storeyed single bay RCC framed prototype buildings were constructed for experimental purpose at IITG, one supported on conventional isolated footings and the other on a seismic isolation system, consisting of lead plug bearings. Force balance accelerometers and a 12 channel strong motion recorder have been used for recording building response during seismic events. Floor responses from these buildings show amplification for the conventional building while 60 to 70% reduction has been observed for the isolated building. Numerical models of both the buildings have been created in SAP2000 Nonlinear. Infill walls have been modeled as compression struts and have been incorporated into the 3D models using Gap elements. System identification of the recorded data has been carried out using Parametric State Space Modeling (N4SID) and the numerical models have been updated accordingly. The study demonstrates the effectiveness of base isolation systems in controlling seismic response of isolated buildings thereby leading to increased levels of seismic protection. The numerical models calibrated by relatively low level of earthquake shaking provides the starting point for modeling the non-linear response of the building when subjected to strong shaking.

Application to the design of reduced-order robust MPC and MIMO identification

  • Lee, Kwang-Soon;Kim, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.313-316
    • /
    • 1997
  • Two different issues, design of reduced-order robust model predictive control and input signal design for identification of a MIMO system, are addressed and design techniques based on singular value decomposition(SVD) of the pulse response circulant matrix(PRCM) are proposed. For this, we investigate the properties of the PRCM, which is a periodic approximation of a linear discrete-time system, and show its SVD represents the directional as well as the frequency decomposition of the system. Usefulness of the PRCM and effectiveness of the proposed design techniques are demonstrated through numerical examples.

  • PDF