• Title/Summary/Keyword: Numerical errors

Search Result 872, Processing Time 0.024 seconds

Closed-form solution of axisymmetric deformation of prestressed Föppl-Hencky membrane under constrained deflecting

  • Lian, Yong-Sheng;Sun, Jun-Yi;Dong, Jiao;Zheng, Zhou-Lian;Yang, Zhi-Xin
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.693-698
    • /
    • 2019
  • In this study, the problem of axisymmetric deformation of prestressed $F{\ddot{o}}ppl-Hencky$ membrane under constrained deflecting was analytically solved and its closed-form solution was presented. The small-rotation-angle assumption usually adopted in membrane problems was given up, and the initial stress in membrane was taken into account. Consequently, this closed-form solution has higher calculation accuracy and can be applied for a wider range in comparison with the existing approximate solution. The presented numerical examples demonstrate the validity of the closed-form solution, and show the errors of the contact radius, profile and radial stress of membrane in the existing approximate solution brought by the small-rotation-angle assumption. Moreover, the influence of the initial stress on the contact radius is also discussed based on the numerical examples.

Inverse method to obtain reactivity in nuclear reactors with P1 point reactor kinetics model using matrix formulation

  • Suescun-Diaz, Daniel;Espinosa-Paredes, Gilberto;Escobar, Freddy Humberto
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.414-422
    • /
    • 2021
  • The aim of this work considers a second order point reactor kinetics model based on the P1 approximation of transport theory, called in this work as P1 point reactor model. The P1 point reactor model implicitly considers the time derivative of the neutron source which has not been thus considered previously. The inverse method to calculate the reactivity in nuclear reactors -chosen because its high accuracy- Matrix Formulation. The numerical results shown that the Matrix Formulation for the reactivity estimation constitutes a method with insignificant calculation errors.

Approximate Method in Estimating Sensitivity Responses to Variations in Delayed Neutron Energy Spectra

  • J. Yoo;H. S. Shin;T. Y. Song;Park, W. S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.85-90
    • /
    • 1997
  • Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of our approximation, these approximate results are compared with exact results obtained from our previous numerical study.

  • PDF

DEVELOPMENT OF A NON-STANDARD FINITE DIFFERENCE METHOD FOR SOLVING A FRACTIONAL DECAY MODEL

  • SAID AL KATHIRI;EIHAB BASHIER;NUR NADIAH ABD HAMID;NORSHAFIRA RAMLI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.695-708
    • /
    • 2024
  • In this paper we present a non-standard finite difference method for solving a fractional decay model. The proposed NSFDM is constructed by incorporating a non-standard denominator function, resulting in an explicit numerical scheme as easy as the conventional Euler method, but it provides very accurate solutions and has unconditional stability. Two examples from the literature are presented to demonstrate the performance of the proposed numerical scheme, which is compared to three methods from the literature. It is found that the method's estimated errors are extremely minimal, such as within the machine precision.

Novel 2-D FDTD Scheme with Isotropic Dispersion and Enhanced Stability (등방성 분산 특성과 개선된 시간 증분을 가지는 2차원 시간 영역 유한 차분법)

  • Koh Il-Suek;Kim Hyun;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.165-170
    • /
    • 2006
  • A two dimensional(2-D) finite-difference time-domain(FDTD) method based on a novel finite difference scheme is developed to eliminate the numerical dispersion errors. In this paper, numerical dispersion and stability analysis of the new scheme are given, which show that the proposed method is nearly dispersionless, and stable for a larger time step than the standard FDTD method.

Erosion Criteria for the Progressive Collapse Analysis of Reinforcement Concrete Structure due to Blast Load (철근콘크리트 건물의 폭발하중에 의한 연쇄붕괴 해석을 위한 침식 기준)

  • Kim, Han-Soo;Ahn, Hyo-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.335-342
    • /
    • 2014
  • In this paper, reference erosion criteria value suitable for progressive collapse analysis of RC structure due to blast load is proposed. Erosion is fundamentally a numerical technique to overcome the problems such as large numerical errors or abrupt termination of analysis and previous study has been suggested value for blast analysis. But concrete has different stress-strain curve according to strain rate. Consequently, the erosion criteria for the realistic progressive collapse simulation were suggested by comparing experiment results and numerical analysis results. Finally, the real progressive collapse of Oklahoma Federal Building was analyzed by using the median value of two values. And as a result, the analysis result is the actual collapse of the well described.

A Study on Chemical Washing Mechanism by Flowing Film of Detergent/Water Solution (흐르는 세제혼합액막에 의한 화학적 세척 메커니즘에 대한 연구)

  • Jang, Choong-Hyo;Park, Chan-Youl;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.499-506
    • /
    • 2007
  • This study aims to propose evaluation methods of chemical washing performance and estimate the washing capability by flowing detergent/water solution for application to home appliances such as dishwashers. Standard pollutant is stearic acid. A numerical study is also tried using a SIMPLER code. Preliminary experiments are performed by varying the concentration and temperature of the solution. From the pre-experiments, 10 minute pre-curing time is found to be necessary to remove the stearic acid. Stoichiometric ratio and detergent consumption coefficient of reaction between the detergent and stearic are estimated following a proposed method. Washing experiments of pollutant to compare with the numerical results are performed. The relative errors between the experimental and the numerical results with pre-curing time included are less than 7%. In conclusion, important mechanisms of chemical washing are revealed and methods of predicting washing performance are well established.

Numerical determination of crack width for reinforced concrete deep beams

  • Demir, Aydin;Caglar, Naci
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.193-204
    • /
    • 2020
  • In the study, a new, simple and alternative formula is proposed to calculate numerically crack widths of concrete on a finite element (FE) model. By considering more general tension softening behavior of concrete, the proposed expression is derived irrespective of any tension softening model given in the literature or design codes. The test results of six reinforced concrete (RC) deep beams having different geometrical and material properties selected from a recent existing experimental study of the authors are used to verify the accuracy and reliability of the proposed formula and the created numerical FE models of the specimens. Moreover, the crack width results obtained from the FE models are compared with the test results to see the performance of the proposed formula. The results of the study demonstrate that the proposed formula gives very accurate results in a comparison with the test results. The ratios of errors on the results stay commonly at an acceptable level as well. Consequently, the proposed formula is quite simple, unique, and robust to determine crack widths of RC deep beams on an FE model.

An Investigation into the effect of friction in the split hopkinson pressure bar (SHPB) test by numerical experiments (수치해석을 이용한 SHPB 시험의 마찰영향 분석)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Shin, Hyun-Ho;Kim, Jong-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.204-209
    • /
    • 2008
  • The interest in the mechanical behavior of materials at high strain rates has increased in recent years, and by now it is well known that mechanical properties can be strongly influenced by the speed of applied load. The split Hopkinson pressure bar (SHPB) has been widely used to determine mechanical properties of materials at high loading rates. However, to ensure test reliability, measurement error source must be accounted for and eliminated. During experiment, the specimens were located between the incident and the transmit bar. The presence of contact frictions between the test bars and specimen may cause errors. In this work, numerical experiments were carried out to investigate the effect of friction on test results. In SHPB test, the measured stress by the transmitted bar is assumed to be flow stress of the test specimen. Through the numerical experiments, however, it is shown that the measured stress by the transmit bar is axial stress components. When, the contact surface is frictionless, the flow stress and the axial stress of the specimen are about the same. When the contact surface is not frictionless, however, the flow stress and the axial stress are not the same anymore. Therefore, the measured stress by the transmitted bar is not flow stress. The effect of friction on the difference between flow stress and axial stress is investigated.

  • PDF

A Study on Flow Characteristics of Two-Dimensional Backward-Facing Step by CFD (CFD에 의한 2차원 후향계단에서의 재부착 유동특성에 관한 연구)

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 1999
  • The present study is aimed to investigate flow characteristics of two-dimensional backward-fac-ing step by numerical approach. A convection conservation difference scheme based upon SOLA algorithm is used for the solution of the two-dimensional incompressible Navier-Stokes equations to simulate the laminar transitional and trubulent flow conditions at which the experimental data can be available for the backlward-facing step. The twenty kinds of reynolds number are used for the calculations. In an effort to demonstrate that the reported solutions are dependent on the mesh refinement computations are performed on seven different meshes of uniformly increasing refinement. also to investigate the result of inflow dependence two kinds of the inflow profile are chosen for the laminar flow. Irregular grid is adopted to minimize the errors on the satis-faction fo the discretized continuity. As criterion of benchmarking the result of numerical simula-tion reattachment lengthis used for the selected Reynolds numbers. The results of the present study prove the fact that the numerical predictions agree well with the experimental data and the flow characteristics are shown at the backward-facing step.

  • PDF