• Title/Summary/Keyword: Numerical dispersion

Search Result 586, Processing Time 0.03 seconds

유선 시뮬레이션 기법과 준해석해를 이용한 용질 거동 분석

  • 정대인;최종근;박광원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.57-62
    • /
    • 2004
  • Streamline simulation researches have been extensively accomplished due to the swiftness of computation and the reduction of numerical dispersion. In this study, we developed a streamline simulation model using a semianalytical solution of ID transport equation. To validate accuracy of the developed model, we compared simulation results of contaminant transport, which were acquired by streamline simulation models using an analytical solution, a numerical solution, and a semianalytical solution. The developed model using the semianalytical solution matched well with the model using an analytical solution. However, streamline simulation model using a numerical solution showed numerical dispersion. For an advection-dominant flow, there was little difference in the simulation results between the developed model and tile analytical model, but the differences between the analytical model and the numerical model were cleary shown. From the comparison of computing time we know that the streamline simulation using the semianalytical solution is 2-60 times as fast as the streamline simulation using the numerical solution.

  • PDF

Guided Wave Calculation and Its Applications to NDE

  • Hayashi, Takahiro
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2004
  • This paper describes the calculation technique for guided wave propagation with a semi-analytical finite element method (SAFEM) and shows some results of numerical calculation and guided wave simulation for plates, pipes and railway rails. The SAFEM calculation gives dispersion curves and wave structures for bar-like structures. Dispersion curve software for a pipe is introduced, and also dispersion corves for a rail are given and experimentally verified. The mode conversions in a plate with a defect and in a pipe with an elbow or a defect are shown as examples of our guided wave simulations.

Experimental Demonstration and Analytic Derivation of Chromatic Dispersion Monitoring Technique Based on Clock-frequency Component

  • Kim, Sung-Man
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.215-220
    • /
    • 2012
  • In an earlier work, we proposed the chromatic dispersion monitoring technique of non-return to zero (NRZ) signal based on clock-frequency component (CFC) through numerical simulations. However, we have not yet shown any experimental demonstration or analytic derivation of it. In this paper, we show an experimental demonstration and analytic derivation of the proposed chromatic dispersion monitoring technique. We confirm that the experimental results and the analytic results correspond with the simulation results. We also demonstrate that monitoring range and accuracy can be improved by using a simple clock-extraction method.

A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile) (라그란지안 입자확산모델개발(농도 계산방법의 검토))

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 이용한 1차원 종확산방정식의 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1994
  • Various Eulerian-Lagrangian numerical models for the one-dimensional longitudinal dispersion equation are studied comparatively. In the model studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing adveciton and the other dispersion. The advection equation has been solved using the method of characteristics following fluid particles along the characteristic line and the results are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpolation polynomials are superior to Lagrange interpolation polynomials in reducing dissipation and dispersion errors in the simulation.

  • PDF

Numerical study on temporal resolution of meteorological information for prediction of Asian dust (황사의 확산예측을 위한 기상정보의 시간해상도에 관한 수치연구)

  • Lee Soon-Hwan;Gwak Eun-Young;Ryu Chan-Su;Moon Yun-Seob
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.891-902
    • /
    • 2004
  • In order to predict air pollution and Yellow-sand dispersion precisely, it is necessary to clarify the sensitivity of meteorological field input interval. Therefore numerical experiment by atmospheric dynamic model(RAMS) and atmospheric dispersion model(PDAS) was performed for evaluating the effect of temporal and spatial resolution of meteorological data on particle dispersion. The results are as follows: 1) Base on the result of RAMS simulation, surface wind direction and speed can either synchronize upper wind or not. If surface wind and upper wind do not synchronize, precise prediction of Yellow-sand dispersion is strongly associated with upwelling process of sand of particle. 2) There is no significant discrepance in distribution of particle under usage of difference temporal resolution of meteorological information at early time of simulation, but the difference of distribution of particles become large as time goes by. 3) There is little difference between calculated particles distributions in dispersion experiments with high temporal resolution of meteorological data. On the other hand, low resolution of meteorological data occur the quantitative difference of particle density and there is strong tendency to the quantitative difference.

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

Numerical Study of Shear-Enhanced Turbulent Diffusion (전단 증진된 난류확산의 수치적 연구)

  • Lee, Chang-Hun;Choe, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.944-951
    • /
    • 2001
  • The purpose of this study is to investigate the effect of shear on turbulent diffusion. Turbulent Couette flows at low Reynolds number are numerically simulated using a Lagrangian PDF method. Flow field and particle trajectories are computed and analyzed in detail. Statistics for particle dispersion obtained from numerical simulations is compared with the classical scaling relations for dispersion in a shear flow.

Dispersion Compensation in the Optical Fiber Transmission system using the Fiber Bragg Grating (FBG를 이용한 광 파이버 분산 보상에 관한 연구)

  • 신희성;홍성철;손용환;이종윤;이창원;정진호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.81-84
    • /
    • 2001
  • We propose the cascade FBG(Fiber Bragg Grating)s to compensate the dispersion, discuss the dispersion characteristics of such cascaded FBGs, compare with the single FBG dispersion compensator. For these, we theoretically consider the sencond- and third-order group-velocity dispersion(GVD) in the single fiber grating using plane wave solution and the coupled mode equation. We also theoretically find the group-velocity dispersion in the cascaded fiber gratings from the results in the single fiber grating and present the optimum disign data of the cascaded FBGs dispersion compensator in the N-channel WDM system through the numerical simulation.

  • PDF