• Title/Summary/Keyword: Numerical controllers

Search Result 180, Processing Time 0.021 seconds

A Study on the Sensorless Speed Control of Induction Motor using Direct Torque Control (직접토크 제어를 이용한 유도전동기의 센서리스 속도제어에 관한 연구)

  • Yoon, Kyoung-Kuk;Oh, Sae-Gin;Kim, Jong-Su;Kim, Yoon-Sik;Lee, Sung-Gun;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1261-1267
    • /
    • 2009
  • The Direct Torque Control[DTC] controls torque and flux by restricting the flux and torque errors within respective hysteresis bands, and motor torque and flux are controlled by the stator voltage space vector using optimum inverter switching table. And the Current Error Compensation method is on the basis of compensating current difference between the induction motor and its numerical model, in which the identical stator voltage is supplied for both the actual motor and the model so that the gaps between stator currents of the two can be forced to decay to zero as time proceeds. Consequently, the rotor speed approaches to the model speed, namely, setting value and the system can control motor speed precisely. This paper proposes a new sensorless speed control of induction motor using DTC and Current Error Compensation, which requires neither shaft encoder, speed estimator nor PI controllers. And through computer simulation, confirm effectiveness of proposed method.

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

Fuzzy Hybrid Control of a Smart TMD for Reduction of Wind Responses in a Tall Building (초고층건물의 풍응답제어를 위한 스마트 TMD의 퍼지 하이브리드제어)

  • Kim, Han-Sang;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • Fuzzy hybrid control technique with a smart tuned mass damper(STMD) was proposed in this study for the suppression of wind-induced motion of a tall building. To develop the effective control algorithm for a STMD, skyhook and groundhook control algorithms were employed. Usually, skyhook controller can effectively reduce STMD motion and groundhook controller shows good control performance for the reduction of building responses. In this study, fuzzy hybrid controller, which can determine an optimal weighting factor for combining two controllers in real time, was developed to improve the control performance of conventional hybrid controller using weighted sum approach. A 76-story office building was used as an example structure to investigate the performance of the proposed controller. A magnetorheological(MR) damper was used to develop a STMD and the control performance of STMD was evaluated comparing with the passive and active TMD. The numerical studies show that the control effectiveness of a STMD is significantly superior to that of the conventional TMD. It is also shown that fuzzy hybrid controller can effectively adjust skyhook and groundhook control algorithms and reduce both responses of STMD and building.

Robust Slewing Control of A Flexible Space Structure using Sliding Surface (슬라이딩 평면을 이용한 유연우주비행체의 강인 선회제어)

  • Kim, Jin Hyeong;Hong, Chang Ho;Seok, Jin Yeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • This paper presents a robust slewing control of a flexible space structure based on sliding surface design. A sliding surface is designed for a single-axis rest-to-rest slewing in view of target angle, target angular velocity, and root monent of the flexible appendage. In comparison with the Lypunov control law, both controllers guarantee the stability and command tracking capabilities for nominal system. It is also shown that the designed control law provides further robustness to internal/external uncertainties. Extending the results of a single-axis maneuver, a sliding mode control law was sought for an arbitrary three-axis maneuver. Quaternion was used to determine the attitude of a space structure and sliding surfaces were designed for each axis, thereby a robust control law was derived considering the coupling effects between each rotational axis during the maneuver. Several numerical examples were demonstrated to show the effectiveness of the designed control law.

Tension/Movement Control of Working Robot and Dynamic Model of the Stringing Wire Cable (가설 와이어 케이블 동적모델과 작업로봇의 장력/이동 제어)

  • Hong, Jeng-Pyo;Kim, Yoon-Sik;Lee, Sung-Geun;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.118-125
    • /
    • 2012
  • In this paper, an approach to designing controllers for the tension/movement control of working robot to install a stringing wire cable is presented. To design a controller, when the robot moves a certain distance maintaining constant tension, the dynamic model of a stringing wire cable which considers effects of weights according to changing lengths is presented. Also the tension at startup of the working robot is studied by numerical analysis which is based on the equation of the dynamic wire model. From the dynamic model for a stringing wire cable, working robot for tension/movement control is suggested and designed a feedforward controller with a accelerator gain to suppress a mutual interference of the both tasks of tension/movement control. Depending on the operating conditions of the working robot, the effectiveness of the suggested system has been verified by the simulation and experimental results.

Non-fragile robust guaranteed cost control for descriptor systems with parameter uncertainties (변수 불확실성 특이시스템의 비약성 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.59-66
    • /
    • 2007
  • In this paper, we consider the non-fragile robust guaranteed cost state feedback controllers design method for descriptor systems with parameter uncertainties and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile robust guaranteed cost controller, the measure of non-fragility in controller, the upper bound of guaranteed cost performance measure to minimize the guaranteed cost are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile robust guaranteed cost controller satisfies the asymptotic stability and minimizes the guaranteed cost for the closed loop descriptor systems with parameter uncertainties and controller fragility. Finally, a numerical example is given to illustrate the design method.

Delay-range-dependent Stability Analysis and Stabilization for Nonlinear Systems : T-S Fuzzy Model Approach (비선형 시스템의 시간 지연 간격에 종속적인 안정도 분석 및 제어기 설계: TS 퍼지 모델 적용)

  • Song, Min-Kook;Park, Jin-Bae;Kim, Jin-Kyu;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.337-342
    • /
    • 2009
  • This paper concerns delay-range-dependent robust stability and stabilization for time-delay nonliner system via T-S fuzzy model approach. The time delay is assumed to be a time-varying continuous function belonging to a given range. On the basis of a novel Lyapunov-Krasovskii functional, which includes the information of the range, delay-range-dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state-feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach.

Multiple-Model Probabilistic Design for Centralized Repetitive Controllers of Multiple Systems (다물체시스템의 중앙집중 연속학습제어 복수모형 확률설계기법)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-105
    • /
    • 2011
  • This paper presents a method to design a centralized repetitive controller that is robust to variations in the multiple system parameters. The uncertain parameters are specified probabilistically by their probability distribution functions. Instead of working with the distribution functions directly, the centralized repetitive controller is designed from a set of models that are generated from the specified probability functions. With this multiple-model design approach, any number of uncertain parameters that follow any type of distribution functions can be treated. Furthermore, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed multiple-model design method produces a repetitive controller that is significantly more robust than an optimal repetitive controller designed from a single nominal model of the multiple system.

Nonlinear Control by Feedback Linearization for Panel Flutter at Elevated Temperature (열하중을 받는 패널플러터의 궤환 선형화에 의한 비선형제어)

  • 문성환;이광주
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.45-52
    • /
    • 2006
  • In this study, a nonlinear control by feedback linearization method, one of nonlinear control schemes based on the nonlinear model, is proposed to suppress the flutter of a supersonic composite panel using piezoelectric materials. Most of the previous panel flutter controllers are the LQR(Linear Quadratic Regulator) which is based on the linear model. A nonlinear feedback linearizing controller proposed in this study considers the nonlinear characteristics of the system model. We use the actuator implemented by piezoceramic PZT. Using the principle of virtual displacements and a finite element discretization with the conforming four-node rectangular element, we first derive the discretized dynamic equations of motion, which are transformed into a nonlinear coupled-modal equations of motion of state space form. The effectiveness of the proposed method is also compared with the LQR based on the linear model through numerical simulations in the time domain using the Newmark method.

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.