• Title/Summary/Keyword: Numerical computation

Search Result 1,366, Processing Time 0.027 seconds

Study on Velocity Measurement and Numerical Computation in a Rectangular Duct with $90^\circ$ Bend Elbow (곡면 엘보우를 가진 사각덕트 내의 유속측정 및 수치계산에 관한 연구)

  • 윤영환;박원구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.910-917
    • /
    • 2003
  • Fluid flow in a rectangular duct for 90$^{\circ}$ bend elbow with the ratio of 1.5 between its curvature radius and width is measured by 5 W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 11,643, 19,746 and 24,260. From the comparison, computation of principal velocity components in the duct predicts the experimental data somewhat satisfactorily even though those of minor velocity components and turbulent kinetic energy do not match with the experimental data quite well. K-factor for the bend elbow is computed to be average 0.086 while the equivalent ASHRAE data is 0.07.

Computation Procedures of Reliability Measures for Interval Data (구간 데이터에 대한 신뢰성 척도 산정 절차)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.149-159
    • /
    • 2007
  • This paper is to propose two computation procedures of reliability measures for large interval data. First method is efficient to verify the relationship among four reliability measures such as F(t), R(t), f(t) and $\lambda(t)$. Another method is effective to interpret the concept of various reliability measures. This study is also to reinterpret and recompute the errors of four reliability measures discovered in the reliability textbooks. Various numerical examples are presented to illustrate the application of two proposed procedures.

Open Boundary Conditions in Parabolic Approximation Model (포물형 근사식 수치모형의 투과 경계조건)

  • Seo, Seung-Nam;Lee, Dong-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2007
  • Most of parabolic approximation models employ a relatively limited open boundary condition in which there is no depth variation in the longshore direction outside of the computation domain so that Snell's law may be presumed to hold. Existing Kirby's condition belongs to this category and in the paper both modified Kirby's method and Dirichlet boundary condition are presented in detail and numerical results of three methods were shown. Judging from computation to wave propagations over a circular shoal in a constant depth, the method based on present Dirichlet boundary condition with fictitious numerical adjusting regions in both sides of the computation domain gives the least distorted amplitude ratio distribution.

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

Point interpolation method based on local residual formulation using radial basis functions

  • Liu, G.R.;Yan, L.;Wang, J.G.;Gu, Y.T.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.713-732
    • /
    • 2002
  • A local radial point interpolation method (LRPIM) based on local residual formulation is presented and applied to solid mechanics in this paper. In LRPIM, the trial function is constructed by the radial point interpolation method (PIM) and establishes discrete equations through a local residual formulation, which can be carried out nodes by nodes. Therefore, element connectivity for trial function and background mesh for integration is not necessary. Radial PIM is used for interpolation so that singularity in polynomial PIM may be avoided. Essential boundary conditions can be imposed by a straightforward and effective manner due to its Delta properties. Moreover, the approximation quality of the radial PIM is evaluated by the surface fitting of given functions. Numerical performance for this LRPIM method is further studied through several numerical examples of solid mechanics.

Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid (적응격자계를 이용한 경계층의 확산제어천이 예측)

  • Cho J. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

Numerical Evaluation of The Rayleigh Integral Using the FFT Method for Transient Sound Radiation (FFT 방법을 이용한 음압복사에 대한 Rayleigh Integral 의 수치해석적 연구)

  • Jeon, Jae-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.22-30
    • /
    • 1988
  • In this paper, the sound radiation from a clamped circular plate in an infinite baffle is calculated by using the FFT technique. The radiated sound fields are obtained by two-dimensional fast Fourier transform method is the spatial domain instead of a direct numerical evaluation of Rayleigh integral for economy of the computation time. The computation time is consumed at least by 1/200 times of the direct numerical evaluation on the Rayleigh integral in acoustic fields. The FFT method can be applicable to any shaped geometry as well as circular plate. The FFT solution could be very powerful in predicting the near and far fields of complex structures.

  • PDF

A NUMERICAL STUDY ON FLOW AND STIRRING CHARACTERISTICS IN A MICROCHANNEL WITH PERIODIC ARRAY OF CROSS BAFFLES (엇갈림 배플 구조의 마이크로 채널 내 유동 및 혼합 특성에 관한 수치해석적 연구)

  • Heo, S.G.;Kang, S.M.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.101-106
    • /
    • 2006
  • In the microfluidic devices the most important thing is mixing efficiency ol various fluids. In this study a newly designed miler is proposed to enhance the mixing effect with the purpose to apply it to microchannel mixing in a short future. This design is composed of a channel with cross baffles periodically arranged on the both bottom and top surfaces ol the channel. To obtain the yow patterns, the numerical computation was performed by using a commercial code, ANSYS CFX 10.0. To evaluate the mixing performance, we computed Lyapunov exponent and obtained Poincare sections. it was shown that our design provides the excellent mixing effect.