• 제목/요약/키워드: Numerical computation

검색결과 1,366건 처리시간 0.032초

NUMERICAL SOLUTION OF EQUILIBRIUM EQUATIONS

  • Jang, Ho-Jong
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.133-142
    • /
    • 2000
  • We consider some numerical solution methods for equilibrium equations Af + E$^{T}$ λ = r, Ef = s. Algebraic problems of this form evolve from many applications such as structural optimization, fluid flow, and circuits. An important approach, called the force method, to the solution to such problems involves dimension reduction nullspace computation for E. The purpose of this paper is to investigate the substructuring method for the solution step of the force method in the context of the incompressible fluid flow. We also suggests some iterative methods based upon substructuring scheme..

  • PDF

수치조파기에 의해 생성되는 2차원 파도의 유한차분 시뮬레이션 (Finite Difference Simulation of Two-dimensional Waves Generated by Numerical Wavemaker)

  • 이영길;김강신
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.198-203
    • /
    • 2003
  • Unsteady two-dimensional nonlinear waves which are generated by the numerical wavemaker of plunging type are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Marker-density function method is adopted for the simulation of wave breaking phenomena, and the computations are carried out with various wave amplitudes and two section shapes of wavemaker. The computation results are compared with other existing computational and experimental results, and the agreement between the experimental data and the computation results is good.

  • PDF

대기중 나노초 펄스레이저 어블레이션의 수치계산 (Numerical simlation of nanosecond pulsed laser ablation in air)

  • 오부국;김동식
    • 한국레이저가공학회지
    • /
    • 제6권3호
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

Numerical Ballistic Modeling in Game Engines

  • YoungBo Go;YunJeong Kang
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.117-126
    • /
    • 2023
  • To improve the overall performance and realism of your game, it is important to calculate the trajectory of a projectile accurately and quickly. One way to increase realism is to use a ballistic model that takes into account factors such as air resistance, density, and wind when calculating a projectile's trajectory. However, the more these factors are taken into account, the more computationally time-consuming and expensive it becomes, creating a trade-off between overall performance and efficiency. Therefore, we present an optimal solution to find a balance between ballistic model accuracy and computation time. We perform ballistic calculations using numerical methods such as Euler, Velocity Verlet, RK2, RK4, and Akima interpolation, and measure and compare the computation time, memory usage (RSS, Resident Set Size), and accuracy of each method. We show developers how to implement more accurate and efficient ballistic models and help them choose the right computational method for their numerical applications.

외부유동에 의한 캐버티 내의 비정상 유동에 대한 수치계산 (Numerical Computation of Unsteady Flow in a Cavity Induced by an Oscillatory External Flow)

  • Yong kweon Suh;Park, Yoon-Hwan;Park, Jun-Gwan;Moon, Jong-Ghoon
    • 한국해안해양공학회지
    • /
    • 제9권4호
    • /
    • pp.194-200
    • /
    • 1997
  • 주기적으로 요동하는 외부유동에 의해 생성되는 캐버티 주위의 2차원 천수유동은 수치적으로 연구하였다. 실험결과와 비교하기 위해 T형의 용기모델을 수치적으로 계산하여 만들었다. 수치계산에서는 캐버티의 종횡비가 전체적인 유동패턴에 크게 영향을 끼치지 않고 종횡비 2에서는 캐버티의 깊은 부분에 정체된 유동형태가 생성되는 것을 제시한다. 높은 레이놀즈 수에서 유동을 가시화 시켰을 때 나다나지 않았던 많은 와류들이 유동장을 특성화 시키고 있다. 외부지역에서의 물질전달은 실험에서 나타난 입자궤적과 잘 일치한다. 캐버티의 외부지역에 위치한 두쌍의 와류가 규모가 큰 시계방향과 반시계방향의 순환유동을 발생시키는 원인이 되는 것이 증명된 셈이다.

  • PDF

병렬 타부 탐색법을 이용한 발전기 기동정지계획 (Unit Commitment Using Parallel Tabu Search)

  • 김형수;문경준;조덕환;황기현;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.84-88
    • /
    • 2001
  • This paper proposes a method of solving a unit commitment problem using parallel tabu search (PTS). The TS is efficient optimization method using meta-heuristic. In this paper, to reduce the computation time for evaluating the neighborhoods, an evaluating method only on changed part and a path relinking method as diversification strategy are proposed. To show the usefulness of the proposed method, we simulated for 10 units system and 110 units system. Numerical results show improvements in the generation costs and the computation time compared with conventional methods. Numerical results show improvements in the generation cost and the computation time compared to previously obtained results.

  • PDF

정적-외연적 강소성 유한요소법의 개발 및 펀치 행정구간에 따른 영향과 Osakada 방법의 초기 변형율 증분에 따른 영향분석 (Development of Static-explicit rigid-plastic finite Element Method and investigate the effect of punch stroke and the strain increment in Osakada method)

  • 정동원;이승훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1545-1548
    • /
    • 2003
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study. static-explicit rigid-plastic finite element method will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. Also, we investigated the effect of punch stroke and the strain increment this method. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

전달강성계수법과 부분구조합성법을 이용한 구조물의 진동해석 (Vibration Analysis of Structures Using the Transfer Stiffness Coefficient Method and the Substructure Synthesis Method)

  • 최명수
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.24-30
    • /
    • 2001
  • The substructure synthesis method(SSM) is developed for overcoming disadvantages of the Finite Element Method(FEM). The concept of the SSM is as follows. After dividing a whole structure into several substructures, every substructures are analyzed by the FEM or experiment. The whole structure is analyzed by using connecting condition and the results of substructures. The concept of the transfer stiffness coefficient method(TSCM) is based on the transfer of the nodal stiffness coefficients which are related to force vectors and displacement vectors at each node of analytical mode1. The superiority of the TSCM to the FEM in the computation accuracy, cost and convenience was confirmed by the numerical computation results. In this paper, the author suggests an efficient vibration analysis method of structures by using the TSCM and the SSM. The trust and the validity of the present method is demonstrated through the numerical results for computation models.

  • PDF

2차원 정적-외연적 강소성 유한요소법의 개발 및 펀치 행정구간에 따른 영향분석 (Development of 2-Dimensional Static-explicit Rigid-plastic Finite Element Method and Investigation of the Effect of Punch Stroke)

  • 정동원;이승훈
    • 한국기계가공학회지
    • /
    • 제3권3호
    • /
    • pp.39-45
    • /
    • 2004
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study, static-explicit rigid-plastic finite element method will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

2차원 단면해석을 위한 정적-외연적 강소성 유한요소법의 개발 및 적용 (The Development of Static-explicit Rigid-plastic Finite Element Method and Application to 2-dimension Sectional Analysis)

  • 정동원;이승훈
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.91-97
    • /
    • 2003
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study, revised rigid-plastic finite element method Will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF