• 제목/요약/키워드: Numerical Visualization

검색결과 425건 처리시간 0.019초

스파이럴형 풍력터빈 블레이드의 설계 및 공력특성에 관한 연구 (A study on design and aerodynamic characteristics of a spiral-type wind turbine blade)

  • 여건;리치앙;김윤기;김경천
    • 한국가시화정보학회지
    • /
    • 제10권1호
    • /
    • pp.27-33
    • /
    • 2012
  • This paper describes a new design of small-scale horizontal wind blade, called spiral wind turbine blade. Theoretical and numerical approaches on the prediction of aerodynamic performance of the blade have been conducted. A theoretical equation is successfully derived using the angular momentum equation to predict aerodynamic characteristics according to the design shape parameters of spiral blade. To be compared with the theoretical value, a numerical simulation using ANSYS CFX v12.1 is performed on the same design with the theoretical one. Large scale tip vortex is captured and graphically presented in this paper. The TSR-$C_p$ diagram shows a typical parabolic relation in which the maximum efficiency of the blade approximately 25% exists at TSR=2.5. The numerical simulation agrees well with that of the theoretical result except at the low rotational speed region of 0~20 rad/s.

수축열조의 온도 계층화에 대한 수치해석 및 실험적 연구 (Numerical Analysis and Experiments for the Stratification of the Hot Water Storage)

  • 양윤섭;백남춘;김홍제;유제인;이준식
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.187-197
    • /
    • 1993
  • In this study, the numerical analysis and experiments of the hot water storage using the thermal stratification techniques were carried out. The CPU time for a typical run of the the thermal stratification up to 900 seconds took one week for a $81{\times}31$ mesh size and 10 days for a $118{\times}31$ mesh size, respectively, for a cylindrical shape of the storage. In the initial stage, the numerical results were in favorable agreement with the experimental results, but it showed that the temperature gradients in the storage decreased gradually with time. It was also found that the increase of ${\delta}t$ decreased the convergent speed due to the intensive fluctuation of the velocity field in every iteration. The increase of numbers of grids is projected to forecast a more accurate result, but it made the computing time longer and woul slow down convergence. At the experiments of the flow visualization, it was confirmed that the thermal stratification was apparently built up due to the installation of diffuser at the lower part of the storage. Thus, the thermal performance of the storage could be improved by installing the diffusers at the inlet and outlet.

  • PDF

자유수면 근처에서의 보오텍스 방출 현상에 관한 고찰 (Study on the Vortex Shedding Phenomena Near Free Surface)

  • 홍석원;이판묵
    • 대한조선학회논문집
    • /
    • 제28권2호
    • /
    • pp.118-131
    • /
    • 1991
  • 자유수면 근처에서의 박리유동 현상을 수치 시뮬레이션 방법과 유선 가시화 시험 방법으로 연구하였다. 수치 시뮬레이션은 물체표면에서 유기되고 확산(diffusion) 및 대류(convection)에 의해 유동중으로 박리되어 방출되는 보오티시티(vorticity)를 다수의 보오텍스로 치환하여 유동의 변화와 유체력을 구하는 보오텍스블럽 법을 사용하여 수행하였다. 이 방법으로 대규모의 와류의 생성 및 변화를 추정할 수 있으며 또한 자유수면과 와류유동의 상호간섭현상 그리고 동 유체력 등을 추정할 수 있었다. 유선 가시화 시험은 해사기술연구소의 공동수조에서 수행하였으며, 직류 전원에 의해 얻어진 수소기포를 가시화 입자로 이용하였다. 조명장치는 할로겐 램프를 이용하였고, 연속사진을 가시화의 결과로 사용하였다. 또한 자유수면의 시간적 공간적 변화를 파고계를 이용하여 계측하고 이로부터 와류유동의 변화 주기를 추정하였다.

  • PDF

협착된 경동맥내 천이 유동 수치 해석 (Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery)

  • 김동민;황진율;민두재;조원민
    • 한국가시화정보학회지
    • /
    • 제20권1호
    • /
    • pp.52-63
    • /
    • 2022
  • Direct numerical simulation of blood flow in a stenosed, patient-specific carotid artery was conducted to explore the transient behavior of blood flow with special emphasis on the wall-shear stress distribution over the transition region. We assumed the blood as an incompressible Newtonian fluid, and the vessel was treated as a solid wall. The pulsatile boundary condition was applied at the inlet of the carotid. The Reynolds number is 884 based on the inlet diameter, and the maximum flow rate and the corresponding Womersley number is approximately 5.9. We found the transitional behavior during the acceleration and deceleration phases. In order to quantitatively examine the wall-shear stress distribution over the transition region, the probability density function of the wall-shear stress was computed. It showed that the negative wall-shear stress events frequently occur near peak systole. In addition, the oscillatory shear stress index was used to further analyze the relationship with the negative wall-shear stress appearing in the systolic phase.

VGG16 과 U-Net 구조를 이용한 공력특성 예측 (Prediction of aerodynamics using VGG16 and U-Net)

  • 김보라;이승훈;장승현;황광일;윤민
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.109-116
    • /
    • 2022
  • The optimized design of airfoils is essential to increase the performance and efficiency of wind turbines. The aerodynamic characteristics of airfoils near the stall show large deviation from experiments and numerical simulations. Hence, it is needed to perform repetitive analysis of various shapes near the stall. To overcome this, the artificial intelligence is used and combined with numerical simulations. In this study, three types of airfoils are chosen, which are S809, S822 and SD7062 used in wind turbines. A convolutional neural network model is proposed in the combination of VGG16 and U-Net. Learning data are constructed by extracting pressure fields and aerodynamic characteristics through numerical analysis of 2D shape. Based on these data, the pressure field and lift coefficient of untrained airfoils are predicted. As a result, even in untrained airfoils, the pressure field is accurately predicted with an error of within 0.04%.

액주를 이용한 충격파 완화에 대한 수치해석 (Computational Analysis of Mitigation of Shock wave using Water Column)

  • 라자세칼;김태호;김희동
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.49-57
    • /
    • 2022
  • The interaction of planar shock wave with rectangular water column is investigated numerically. The flow phenomenon like reflection, transmission, cavitation, recirculation of shock wave, and large negative pressure due to expansion waves was discussed qualitatively and quantitatively. The numerical simulation was performed in a shock tube with a water column, and planar shock was initiated with a pressure ratio of 10. Three cases of the water column with different thicknesses, namely 0.5D, 1D, and 2D, were installed and studied. Water naturally has a higher acoustic impedance than air and mitigates the shock wave considerably. The numerical simulations were modelled using Eulerian and Volume of fluids multiphase models. The Eulerian model assumes the water as a finite structure and can visualize the shockwave propagation inside the water column. Through the volume of fluids model, the stages of breakup of the water column and mitigation effects of water were addressed. The numerical model was validated against the experimental results. The computational results show that the installation of a water column significantly impacts the mitigation of shock wave.

루버 핀을 지나는 공기의 유동특성에 대한 기초적 연구 (A Basic Study on Air Flow Characteristics in Louvered Fins)

  • 강창수;최태민
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1276-1293
    • /
    • 1993
  • 본 연구는 위에서 언급된 모델보다 훨씬 폭이 큰 23.5mm 루버 핀형 방열기용 열교환기를 모델로 삼고, 레이놀즈수가 500 이하인 저 레이놀즈수(100, 300, 500), 루버 각(22˚,24˚,28˚) 및 핀 피치 와 루버 피치의 비 Fp /Lp(1.23, 1.5) 등의 변화 에 따른 핀 내부의 유동, 전열 특성 및 압력분포등의 영향을 유한차분법으로 수치해석 하였다. 또한 동일한 루버 핀에대해 13:1 모델을 제작하여 염료주입법에의한 유동의 가시화 실험을 하였으며, 그 결과를 수치해석 결과와 비교 검토하였다.

제상모드에 대한 실차 내부 환기유동의 정량적 가시화 연구 (Quantitative Visualization of Ventilation Flow for Defrost Mode in a Real Passenger Car)

  • 이진평;이상준
    • 한국가시화정보학회지
    • /
    • 제8권2호
    • /
    • pp.40-44
    • /
    • 2010
  • Thermal comfort inside a passenger car has been receiving large attention in automobile industries. Especially, the performance of windshield defroster is important in the design of a car to ensure passenger comport and safety. Thereby, better understanding on the ventilation flow along the vehicle windshield is essential to evaluate the performance of windshield defroster. However, most previous studies dealt with the defrost flow using CFD (computational fluid dynamics) calculations or scale-down model experiments. In this study, a real commercial automobile was used to investigate the flow discharged from the vehicle defroster and the ventilation flow along the windshield using a PIV velocity field measurement technique. The experimental data would be useful to understand the flow characteristics in detail and also can be used to validate numerical predictions.

Review of Experimental Studies on Swirling Flow in the Circular Tube using PIV Technique

  • Chang, Tae-Hyun;Nah, Do-Baek;Kim, Sang-Woo
    • 한국가시화정보학회지
    • /
    • 제7권1호
    • /
    • pp.21-28
    • /
    • 2009
  • The study of swirling flow is of technical and scientific interest because it has an internal recirculation field, and its tangential velocity is related to the curvature of streamline. The fluid flow for tubes and elbow of heat exchangers has been studied largely through experiments and numerical methods, but studies about swirling flow have been insufficient. Using the particle image velocimetry(PTV) method, this study found the time averaged velocity distribution with swirl and without swirl along longitude sections and the results appear to be physically reasonable. In addition, streamwise mean velocity distribution was compares with that of other. Furthermore, other experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the colour of the liquid crystal versus temperature using various approaches.

장애물을 갖는 덕트내의 유동가시화 및 수치해석에 관한 해석 (Flow Visualization and Numerical Calculation in a Channel Perturbed by Curvilinear Blockages)

  • 문찬;박진철;김철
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.218-226
    • /
    • 1994
  • Laminar flow and heat transfer in a channel with blockages are obtained numerically in a Reynolds-number range of $100{\leq}Re{\leq}400$. A boundary-fitted curvilinear coordinate system is generated for irregular boundary of the physical region, and solutions of Navier-Stokes equation and energy equation are obtained by finite analytic method in the transformed computational domain. The flow separates in downstream of the blockage and the length of separated-flow region increases with Reynolds number. The heat flux is high on the top of the blockages and increase in the heat transfer occurs where the fluid reattaches the wall. Comparison between computed streamlines and experimental flow-visualization is also presented and discussed.

  • PDF