• Title/Summary/Keyword: Numerical Expression

Search Result 328, Processing Time 0.029 seconds

Analysis the static thrust force and dynamic thrust force in HB-type Linear Pulse Motor (하이브리드형 선형 펄스모터의 정추력 및 동추력 분석)

  • Kim, Dong-Hee;Ahn, Jae-Young;Kim, Kwang-Heon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.214-216
    • /
    • 2007
  • The linear motor is available for linear transition motion, because of its advantages, the motor design and its application have gradually increased, but the quantitative measurement system of thrust force has not been generalized. Need analysis of correct thrust for control performance improvement of HB-LPM(HB-type Linear Pulse Motor). It is difficult to analyze HB-LPM's thrust. In this paper, HB-LPM's thrust is expressed to mathematical expression. And it is proved validity of this numerical formula by thrust measurement system. Two phase driver is composed. It is verified validity of numerical formula that measure waveform of electric current and voltage that is supplied in each phase.

  • PDF

Numerical determination of crack width for reinforced concrete deep beams

  • Demir, Aydin;Caglar, Naci
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.193-204
    • /
    • 2020
  • In the study, a new, simple and alternative formula is proposed to calculate numerically crack widths of concrete on a finite element (FE) model. By considering more general tension softening behavior of concrete, the proposed expression is derived irrespective of any tension softening model given in the literature or design codes. The test results of six reinforced concrete (RC) deep beams having different geometrical and material properties selected from a recent existing experimental study of the authors are used to verify the accuracy and reliability of the proposed formula and the created numerical FE models of the specimens. Moreover, the crack width results obtained from the FE models are compared with the test results to see the performance of the proposed formula. The results of the study demonstrate that the proposed formula gives very accurate results in a comparison with the test results. The ratios of errors on the results stay commonly at an acceptable level as well. Consequently, the proposed formula is quite simple, unique, and robust to determine crack widths of RC deep beams on an FE model.

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

A Numerical Investigation of Hydrogen Absorption Reaction Based on ZrCo for Tritium Storage (I) (삼중수소 저장을 위한 ZrCo 저장재에서의 수소 흡장에 대한 수치해석적 연구 (I))

  • Yoo, Haneul;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.448-454
    • /
    • 2012
  • In this paper, a three-dimensional hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 99% hydrogen charging time. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure-composition isotherm data given by Konishi et al. In addition, this present model provides multi-dimensional contours such as temperature and H/M atomic ratio in the thin doublelayered annulus metal hydride region. This numerical study provides fundamental understanding during hydrogen absorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen charging performance. The present three-dimensional hydrogen absorption model is a useful tool for the optimization of bed design and operating conditions.

Accuracy of incidental dynamic analysis of mobile elevating work platforms

  • Jovanovic, Miomir L.J.;Radoicic, Goran N.;Stojanovic, Vladimir S.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.553-562
    • /
    • 2019
  • This paper presents the results of a study into the dynamic behaviour of a support structure of a mobile elevating work platform. The vibrations of the mechanical system of the observed structure are examined analytically, numerically, and experimentally. Within the analytical examination, a simple mathematical model is developed to describe free and forced vibrations. The dynamic analysis of the mechanical system is conducted using a discrete dynamic model with a reduced number of vibrational degrees of freedom. On the basis of the expression for the system energy, and by applying Lagrange's equations of the second kind, differential equations are derived for system vibrations, frequencies are determined, and the laws of forced platform vibration are established. At the same time, a nonlinear FEM model is developed and the laws of free and forced vibration are determined. The experimental and numerical part of the study deal with the examination of the real structure in extreme conditions, taking into account: the lowest eigenfrequency, forced actions that could endanger the general stability, the maximal amplitudes, and the acceleration of the work platform. The obtained analytical and numerical results are compared with the experiments. The experimental verification points to the adverse behaviour of the platform in excitation cases - swaying. In such a situation, even a relatively small physical force can lead to unacceptably high amplitudes of displacement and acceleration - exceeding the usual work values.

Numerical calculations for bioconvection MHD Casson nanofluid flow: Study of Brownian motion

  • Hussain, Muzamal;Sharif, Humaira;Khadimallah, Mohamed Amine;Ayed, Hamdi;Banoqitah, Essam Mohammed;Loukil, Hassen;Ali, Imam;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.143-150
    • /
    • 2022
  • In this paper, the non-linear mathematical problem is solved via numerical scheme by utilizing shooting method. Brownian diffusion and thermophoresis along mass and heat transfer are accounted for. Non-linear expression is reduced via non-dimensional variables. The simplified ordinary differential equations are tackled by shooting technique. Behavior of distinct influential parameters is investigated graphically and analyzed for temperature and concentration profile. Our finding indicates that temperature profile is enhanced for the thermophoresis, Brownian motion coefficient, Prandtl number, Eckert number and temperature slip parameter. Comparison of numerical technique with the extant literature is made and an acceptable agreement is attained. Graphs are plotted to examine the influence of these parameters.

ON CHOWLA'S HYPOTHESIS IMPLYING THAT L(s, χ) > 0 FOR s > 0 FOR REAL CHARACTERS χ

  • Stephane R., Louboutin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.1-22
    • /
    • 2023
  • Let L(s, χ) be the Dirichlet L-series associated with an f-periodic complex function χ. Let P(X) ∈ ℂ[X]. We give an expression for ∑fn=1 χ(n)P(n) as a linear combination of the L(-n, χ)'s for 0 ≤ n < deg P(X). We deduce some consequences pertaining to the Chowla hypothesis implying that L(s, χ) > 0 for s > 0 for real Dirichlet characters χ. To date no extended numerical computation on this hypothesis is available. In fact by a result of R. C. Baker and H. L. Montgomery we know that it does not hold for almost all fundamental discriminants. Our present numerical computation shows that surprisingly it holds true for at least 65% of the real, even and primitive Dirichlet characters of conductors less than 106. We also show that a generalized Chowla hypothesis holds true for at least 72% of the real, even and primitive Dirichlet characters of conductors less than 106. Since checking this generalized Chowla's hypothesis is easy to program and relies only on exact computation with rational integers, we do think that it should be part of any numerical computation verifying that L(s, χ) > 0 for s > 0 for real Dirichlet characters χ. To date, this verification for real, even and primitive Dirichlet characters has been done only for conductors less than 2·105.

Analysis of Scattering Characteristics by the Double Impedence Wedge (두 개의 임피던스 ?지에 의한 산란 특성 해석)

  • 서용원;장정민이민수이상설
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.363-366
    • /
    • 1998
  • High frequency scattered fields by a double impedence wedge are computed. In the procedure of the computation, arbitrary impedence faces and wedge angles are considered. The diffraction coefficients for the single, double and triple diffraction mechanism are founded. The second-order and third-order diffracted fields are approximated via the extended spectral ray method and the modified Pauli-Clemmow method of the steepest descent. The maliuzhinets function which is very difficult to obtain accurate value is approximated by the Volakis's asymtotic expression. Numerical computations are performed for the various wedge angles and surface impedence values.

  • PDF

Reliability computation technique for ball bearing under the stress-strength model

  • Nayak, S.;Seal, B.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.51-63
    • /
    • 2016
  • Stress function of ball bearing is function of multiple stochastic factors and this system is so complex that analytical expression for reliability is difficult to obtain. To address this pressing problem, in this article, we have made an attempt to approximate system reliability of this important item based on reliability bounds under the stress strength setup. This article also provides level of error of this item. Numerical analysis has been adopted to show the closeness between the upper and lower bounds of this item.

Toward a Relativistic Magnetohydrodynamic Code

  • Jang, Han-Byul;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2011
  • Building a relativistic magnetohydrodynamic (RMHD) codes based on upwind schemes is a challenging project, because the characteristic wave structures for RMHDs has not yet been analytically given. We obtained an analytic expression of eigenvalues and eigenvectors of the flux Jacobian matrix of RMHDs for one-dimensional, isothermal flows with two velocity and magnetic field components (that is, x and y components only), which can be used to build numerical codes. The degeneracies were taken into account. Here, we present preliminary test results with an RMHD code based on the total variation diminishing (TVD) scheme.

  • PDF